I am a
Home I AM A Search Login

Papers of the Week

2020 Oct 26

Int J Mol Sci



Conjugation with Methylsulfonylmethane Improves Hyaluronic Acid Anti-Inflammatory Activity in a Hydrogen Peroxide-Exposed Tenocyte Culture In Vitro Model.


Oliva F, Gallorini M, Antonetti Lamorgese Passeri C, Gissi C, Ricci A, Cataldi A, Colosimo A, Berardi A C
Int J Mol Sci. 2020 Oct 26; 21(21).
PMID: 33114764.


Rotator cuff tears (RCTs) and rotator cuff disease (RCD) are important causes of disability in middle-aged individuals affected by nontraumatic shoulder dysfunctions. Our previous studies have demonstrated that four different hyaluronic acid preparations (HAPs), including Artrosulfur hyaluronic acid (HA) (Alfakjn S.r.l., Garlasco, Italy), may exert a protective effect in human RCT-derived tendon cells undergoing oxidative stress damage. Recently, methylsulfonylmethane (MSM) (Barentz, Paderno Dugnano, Italy) has proven to have anti-inflammatory properties and to cause pain relief in patients affected by tendinopathies. This study aims at evaluating three preparations (Artrosulfur HA, MSM, and Artrosulfur MSM + HA) in the recovery from hydrogen peroxide-induced oxidative stress damage in human tenocyte. Cell proliferation, Lactate Dehydrogenase (LDH) release, and inducible nitric oxide synthases (iNOS) and prostaglandin E2 (PGE2) modulation were investigated. In parallel, expression of metalloproteinases 2 (MMP2) and 14 (MMP14) and collagen types I and III were also examined. Results demonstrate that Artrosulfur MSM + HA improves cell escape from oxidative stress by decreasing cytotoxicity and by reducing iNOS and PGE2 secretion. Furthermore, it differentially modulates MMP2 and MMP14 levels and enhances collagen III expression after 24 h, proteins globally related to rapid acceleration of the extracellular matrix (ECM) remodelling and thus tendon healing. By improving the anti-cytotoxic effect of HA, the supplementation of MSM may represent a feasible strategy to ameliorate cuff tendinopathies.