I am a
Home I AM A Search Login

Accepted

Share this

Relationships Between Pain, Life Stress, Sociodemographics, and Cortisol: Contributions of Pain Intensity and Financial Satisfaction.

The relationship between psychosocial stress and chronic pain is bidirectional. An improved understanding regarding the relationships among chronic pain, life stress, and ethnicity/race will inform identification of factors contributing to health disparities in chronic pain and improve health outcomes. This study aims to assess relationships between measures of clinical pain, life stress, sociodemographics, and salivary cortisol levels.

Learn More >

ASIC3 inhibition modulates inflammation-induced changes in the activity and sensitivity of Aδ and C fiber sensory neurons that innervate bone.

The Acid Sensing Ion Channel 3 (ASIC3) is a non-selective cation channel that is activated by acidification, and is known to have a role in regulating inflammatory pain. It has pro-algesic roles in a range of conditions that present with bone pain, but the mechanism for this has not yet been demonstrated. We aimed to determine if ASIC3 is expressed in Aδ and/or C fiber bone afferent neurons, and to explore its role in the activation and sensitization of bone afferent neurons after acute inflammation. A combination of retrograde tracing and immunohistochemistry was used to determine expression of ASIC3 in the soma of bone afferent neurons. A novel, electrophysiological bone-nerve preparation was used to make recordings of the activity and sensitivity of bone afferent neurons in the presence of carrageenan-induced inflammation, with and without the selective ASIC3 inhibitor APET×2. A substantial proportion of bone afferent neurons express ASIC3, including unmyelinated (neurofilament poor) and small diameter myelinated (neurofilament rich) neurons that are likely to be C and Aδ nerve fibers respectively. Electrophysiological recordings revealed that application of APET×2 to the marrow cavity inhibited carrageenan-induced spontaneous activity of C and Aδ fiber bone afferent neurons. APET×2 also inhibited carrageenan-induced sensitization of Aδ and C fiber bone afferent neurons to mechanical stimulation, but had no effect on the sensitivity of bone afferent neurons in the absence of inflammation. This evidence supports a role for ASIC3 in the pathogenesis of pain associated with inflammation of the bone.

Learn More >

Inpatient postoperative undesirable side effects of analgesics management: a pediatric patients and parental perspective.

The use of analgesics for the treatment of post-operative pain is common, however, such medications are known to have potential side effects. These undesirable secondary effects can have an important impact on patients and impede their recovery.

Learn More >

Overlap of Five Chronic Pain Conditions: Temporomandibular Disorders, Headache, Back Pain, Irritable Bowel Syndrome, and Fibromyalgia.

To assess cohort retention in the OPPERA project and to compare the degree of overlap between pairs of chronic overlapping pain conditions (COPCs) using a cross-sectional analysis of data from 655 adults who completed follow-up in the OPPERA study.

Learn More >

Novel RET agonist for the treatment of experimental neuropathies.

The glial cell line-derived neurotrophic factor (GDNF) family ligands (GFLs) alleviate symptoms of experimental neuropathy, protect and stimulate regeneration of sensory neurons in animal models of neuropathic pain, and restore their functional activity. However, clinical development of GFL proteins is complicated by their poor pharmacokinetic properties and multiple effects mediated by several receptors. Previously, we have identified a small molecule that selectively activates the major signal transduction unit of the GFL receptor complex, receptor tyrosine kinase RET, as an alternative to GFLs, for the treatment of neuropathic pain. We then introduced a series of chemical changes to improve the biological activity of these compounds and tested an optimized compound named BT44 in a panel of biological assays. BT44 efficiently and selectively stimulated the GFL receptor RET and activated the intracellular mitogene-activated protein kinase/extracellular signal-regulated kinase pathway in immortalized cells. In cultured sensory neurons, BT44 stimulated neurite outgrowth with an efficacy comparable to that of GFLs. BT44 alleviated mechanical hypersensitivity in surgery- and diabetes-induced rat models of neuropathic pain. In addition, BT44 normalized, to a certain degree, the expression of nociception-related neuronal markers which were altered by spinal nerve ligation, the neuropathy model used in this study. Our results suggest that the GFL mimetic BT44 is a promising new lead for the development of novel disease-modifying agents for the treatment of neuropathy and neuropathic pain.

Learn More >

Evaluation of the chronic pain classification: study protocol for an ecological implementation field study in low-, middle-, and high-income countries.

The purpose of the present ecological implementation field study is to evaluate the new classification of chronic pain as implemented in the 11th revision of the () with regard to clinical utility and interrater reliability. To evaluate the classification in a variety of settings, the study will be implemented in different low-, middle-, and high-income countries.

Learn More >

Chronic Pain in HIV.

The evolution of therapeutics for and management of human immunodeficiency virus-1 (HIV-1) infection has shifted it from predominately manifesting as a severe, acute disease with high mortality to a chronic, controlled infection with a near typical life expectancy. However, despite extensive use of highly active antiretroviral therapy, the prevalence of chronic widespread pain in people with HIV remains high even in those with a low viral load and high CD4 count. Chronic widespread pain is a common comorbidity of HIV infection and is associated with decreased quality of life and a high rate of disability. Chronic pain in people with HIV is multifactorial and influenced by HIV-induced peripheral neuropathy, drug-induced peripheral neuropathy, and chronic inflammation. The specific mechanisms underlying these three broad categories that contribute to chronic widespread pain are not well understood, hindering the development and application of pharmacological and nonpharmacological approaches to mitigate chronic widespread pain. The consequent insufficiencies in clinical approaches to alleviation of chronic pain in people with HIV contribute to an overreliance on opioids and alarming rise in active addiction and overdose. This article reviews the current understanding of the pathogenesis of chronic widespread pain in people with HIV and identifies potential biomarkers and therapeutic targets to mitigate it.

Learn More >

Orofacial Antinociceptive Effect of Nifedipine in Rodents Is Mediated by TRPM3, TRPA1, and NMDA Processes.

To test for the possible antinociceptive effect of nifedipine in rodent models of acute and chronic neuropathic orofacial pain and the possible involvement of TRP- and NMDA-related processes in this effect.

Learn More >

Microbes, microglia, and pain.

Globally, it is estimated that one in five people suffer from chronic pain, with prevalence increasing with age. The pathophysiology of chronic pain encompasses complex sensory, immune, and inflammatory interactions within both the central and peripheral nervous systems. Microglia, the resident macrophages of the central nervous system (CNS), are critically involved in the initiation and persistence of chronic pain. Microglia respond to local signals from the CNS but are also modulated by signals from the gastrointestinal tract. Emerging data from preclinical and clinical studies suggest that communication between the gut microbiome, the community of bacteria residing within the gut, and microglia is involved in producing chronic pain. Targeted strategies that manipulate or restore the gut microbiome have been shown to reduce microglial activation and alleviate symptoms associated with inflammation. These data indicate that manipulations of the gut microbiome in chronic pain patients might be a viable strategy in improving pain outcomes. Herein, we discuss the evidence for a connection between microglia and the gut microbiome and explore the mechanisms by which commensal bacteria might influence microglial reactivity to drive chronic pain.

Learn More >

Foxp3 plasmid-encapsulated PLGA nanoparticles attenuate pain behavior in rats with spinal nerve ligation.

Microglia play a critical role in neuropathic pain. Since upregulated Foxp3 in microglia enhances tissue repair by resolving neuroinflammation in excitotoxin-induced neuronal death, it may attenuate neuropathic pain in a similar manner. Therefore, this study tests whether Foxp3 introduced with poly (D, L-lactic-co-glycolic acid) (PLGA) nanoparticles (Foxp3 NPs) can alleviate neuropathic pain by inhibiting microglia activity. The prepared Foxp3 NPs had an anti-inflammatory effect on lipopolysaccharide-stimulated BV2 cells in vitro, and localized to spinal microglia in vivo. Further, the Foxp3 NPs significantly attenuated pain behavior induced by spinal nerve ligation in rats for 7days by suppressing microglial activity, followed by the downregulation of pro-nociceptive genes and the upregulation of anti-nociceptive genes in the spinal dorsal horn. Collectively, these data suggest that Foxp3 NPs effectively relieve neuropathic pain in animals by reducing microglia activity and subsequent modulation of neuroinflammation, and may be of therapeutic value in the treatment of neuropathic pain.

Learn More >

Search