I am a
Home I AM A Search Login

Accepted

Share this

Evaluation of the chronic pain classification: study protocol for an ecological implementation field study in low-, middle-, and high-income countries.

The purpose of the present ecological implementation field study is to evaluate the new classification of chronic pain as implemented in the 11th revision of the () with regard to clinical utility and interrater reliability. To evaluate the classification in a variety of settings, the study will be implemented in different low-, middle-, and high-income countries.

Learn More >

Chronic Pain in HIV.

The evolution of therapeutics for and management of human immunodeficiency virus-1 (HIV-1) infection has shifted it from predominately manifesting as a severe, acute disease with high mortality to a chronic, controlled infection with a near typical life expectancy. However, despite extensive use of highly active antiretroviral therapy, the prevalence of chronic widespread pain in people with HIV remains high even in those with a low viral load and high CD4 count. Chronic widespread pain is a common comorbidity of HIV infection and is associated with decreased quality of life and a high rate of disability. Chronic pain in people with HIV is multifactorial and influenced by HIV-induced peripheral neuropathy, drug-induced peripheral neuropathy, and chronic inflammation. The specific mechanisms underlying these three broad categories that contribute to chronic widespread pain are not well understood, hindering the development and application of pharmacological and nonpharmacological approaches to mitigate chronic widespread pain. The consequent insufficiencies in clinical approaches to alleviation of chronic pain in people with HIV contribute to an overreliance on opioids and alarming rise in active addiction and overdose. This article reviews the current understanding of the pathogenesis of chronic widespread pain in people with HIV and identifies potential biomarkers and therapeutic targets to mitigate it.

Learn More >

Orofacial Antinociceptive Effect of Nifedipine in Rodents Is Mediated by TRPM3, TRPA1, and NMDA Processes.

To test for the possible antinociceptive effect of nifedipine in rodent models of acute and chronic neuropathic orofacial pain and the possible involvement of TRP- and NMDA-related processes in this effect.

Learn More >

Microbes, microglia, and pain.

Globally, it is estimated that one in five people suffer from chronic pain, with prevalence increasing with age. The pathophysiology of chronic pain encompasses complex sensory, immune, and inflammatory interactions within both the central and peripheral nervous systems. Microglia, the resident macrophages of the central nervous system (CNS), are critically involved in the initiation and persistence of chronic pain. Microglia respond to local signals from the CNS but are also modulated by signals from the gastrointestinal tract. Emerging data from preclinical and clinical studies suggest that communication between the gut microbiome, the community of bacteria residing within the gut, and microglia is involved in producing chronic pain. Targeted strategies that manipulate or restore the gut microbiome have been shown to reduce microglial activation and alleviate symptoms associated with inflammation. These data indicate that manipulations of the gut microbiome in chronic pain patients might be a viable strategy in improving pain outcomes. Herein, we discuss the evidence for a connection between microglia and the gut microbiome and explore the mechanisms by which commensal bacteria might influence microglial reactivity to drive chronic pain.

Learn More >

Foxp3 plasmid-encapsulated PLGA nanoparticles attenuate pain behavior in rats with spinal nerve ligation.

Microglia play a critical role in neuropathic pain. Since upregulated Foxp3 in microglia enhances tissue repair by resolving neuroinflammation in excitotoxin-induced neuronal death, it may attenuate neuropathic pain in a similar manner. Therefore, this study tests whether Foxp3 introduced with poly (D, L-lactic-co-glycolic acid) (PLGA) nanoparticles (Foxp3 NPs) can alleviate neuropathic pain by inhibiting microglia activity. The prepared Foxp3 NPs had an anti-inflammatory effect on lipopolysaccharide-stimulated BV2 cells in vitro, and localized to spinal microglia in vivo. Further, the Foxp3 NPs significantly attenuated pain behavior induced by spinal nerve ligation in rats for 7days by suppressing microglial activity, followed by the downregulation of pro-nociceptive genes and the upregulation of anti-nociceptive genes in the spinal dorsal horn. Collectively, these data suggest that Foxp3 NPs effectively relieve neuropathic pain in animals by reducing microglia activity and subsequent modulation of neuroinflammation, and may be of therapeutic value in the treatment of neuropathic pain.

Learn More >

Molecular basis for pore blockade of human Na channel Na1.2 by the μ-conotoxin KIIIA.

The voltage-gated sodium channel Na1.2 is responsible for the initiation and propagation of action potentials in the central nervous system. We report the cryo-electron microscopy structure of human Na1.2 bound to a peptidic pore blocker, the μ-conotoxin KIIIA, in the presence of an auxiliary subunit β2 to an overall resolution of 3.0 Å. The immunoglobulin (Ig) domain of β2 interacts with the shoulder of the pore domain through a disulfide bond. The 16-residue KIIIA interacts with the extracellular segments in repeats I to III, placing Lys7 at the entrance to the selectivity filter. Many interacting residues are specific to Na1.2, revealing a molecular basis for KIIIA specificity. The structure establishes a framework for rational design of subtype-specific blockers for Na channels.

Learn More >

Normative data for common pain measures in chronic pain clinic populations: closing a gap for clinicians and researchers.

Normative data for chronic pain questionnaires are essential to the interpretation of aggregate scores on these questionnaires, for both clinical trials and clinical practice. In this study we summarised data from 13,343 heterogeneous patients on several commonly used pain questionnaires that were routinely collected from 36 pain clinics in Australia and New Zealand as part of the electronic Persistent Pain Outcomes Collaboration (ePPOC) including the Brief Pain Inventory (BPI); the Depression Anxiety and Stress Scales (DASS); the Pain Self-Efficacy Questionnaire (PSEQ); and the Pain Catastrophizing Scale (PCS). The data are presented as summarised normative data, broken down by demographic (age, sex, work status, etc) and pain site/medical variables. The mean BPI severity score was 6.4 (moderate-severe) and mean interference score was 7.0. The mean DASS depression score was 20.2 (moderate-severe), mean DASS anxiety was 14.0 (moderate), and mean DASS stress was 21.0 (moderate). The mean PCS scores were 10.0, 5.9, 14.1 and 29.8 for rumination, magnification, helplessness and total, respectively. The mean PSEQ score was 20.7. Males had slightly worse scores than females on some scales. Scores tended to worsen with age until 31-50 years, after which they improved. Scores were worse for those who had a greater number of pain sites, were unemployed, were injury compensation cases, or whose triggering event was a motor vehicle accident or injury at work or home. These results and comparisons with data on the same measures from other countries, as well as their uses in both clinical practice and clinical trials, are discussed.

Learn More >

Intact mast cell content during mild head injury is required for development of latent pain sensitization: implications for mechanisms underlying post-traumatic headache.

Post-traumatic headache (PTH) is one of the most common, debilitating and difficult symptoms to manage after a traumatic head injury. While the mechanisms underlying PTH remain elusive, recent studies in rodent models suggest the potential involvement of calcitonin gene-related peptide (CGRP), a mediator of neurogenic inflammation, and the ensuing activation of meningeal mast cells (MCs), pro-algesic resident immune cells that can lead to the activation of the headache pain pathway. Here, we investigated the relative contribution of MCs to the development of PTH-like pain behaviors in a model of mild closed head injury (mCHI) in male rats. We initially tested the relative contribution of peripheral CGRP signaling to the activation of meningeal MCs following mCHI using a blocking anti-CGRP monoclonal antibody. We then employed a prophylactic MC granule depletion approach to address the hypotheses that intact meningeal MC granule content is necessary for the development of PTH-related pain-like behaviors. The data suggest that following mCHI, ongoing activation of meningeal MCs is not mediated by peripheral CGRP signaling, and does not contribute to the development of the mCHI-evoked cephalic mechanical pain hypersensitivity. Our data, however, also reveals that the development of latent sensitization, manifested as persistent hypersensitivity upon the recovery from mCHI-evoked acute cranial hyperalgesia to the headache trigger glyceryl trinitrate requires intact MC content during and immediately after mCHI. Collectively, our data implicate the acute activation of meningeal MCs as mediator of chronic pain hypersensitivity following a concussion or mCHI. Targeting MCs may be explored for early prophylactic treatment of PTH.

Learn More >

Widespread Pain and Central Sensitization in Adolescents with Signs of Painful Temporomandibular Disorders.

To investigate the associations between signs of painful temporomandibular disorders (TMD) and number of tender points (TPs) and fibromyalgia in adolescents, as well as the relationship between TPs and pressure-pain threshold (PPT) in individuals presenting with local, regional, or widespread pain as a way to investigate the presence of central sensitization (CS).

Learn More >

The evaluation and brain representation of pleasant touch in chronic and subacute back pain.

If touch is perceived as pleasant, it can counteract the experience of pain. However, its pain-inhibitory function might be disturbed in chronic pain and this could contribute to pain-related interference. We investigated the perception of pleasant touch and its brain correlates in chronic back pain patients (CBP) compared to subacute back pain patients (SABP) and healthy controls (HC) using soft brush strokes. CBP showed less positive evaluations of touch. We found the highest activation in somatosensory and insular cortices in CBP, ventral striatum (VS) in SABP, and the orbitofrontal cortex in HC. Brain responses were significantly positively correlated with pleasantness ratings in HC and SABP, but not CBP. Further, the insula responses in CBP were positively correlated with pain-related interference and the VS activation in SABP correlated negatively with affective distress. Brain and behavioral changes in the processing of touch and its pleasantness may be a marker of pain chronicity and raise questions about the therapeutic value of pleasant touch in pain prevention and treatment.

Learn More >

Search