I am a
Home I AM A Search Login

Accepted

Share this

A clinical primer for the expected and potential post-COVID-19 syndromes.

In late 2019, a novel coronavirus SARS-CoV-2 (COVID-19) spread unchecked across the world's population. With tens of millions infected, the long-term consequences of COVID-19 infection will be a major health care focus for years after the contagion subsides. Most complications stem from direct viral invasion provoking an over-exuberant inflammatory response driven by innate immune cells and activation of the clotting cascade causing thrombosis. Injury to individual organs and their protective linings are frequent presentations in respiratory, cardiovascular, and neurological systems. Reviewing the historical context of postviral fatiguing symptoms seems relevant to understanding reports of uneven recoveries and persistent symptoms that are emerging as "long-haul COVID-19." The pandemic is also an unprecedented sociocultural event, transforming how people consider their health, gather in groups, and navigate their daily lives. The unprecedented sociocultural stresses of the pandemic will have an invisible, ubiquitous, and predictable impact on neurologic, endocrine, and immune functioning, even in people untouched by the virus. COVID-19 may also have a surprise or two in store, with unique clinical presentations and novel mechanisms of injury which are yet to clearly emerge. Although challenging and unfortunate, these times also represent a unique opportunity to start to unravel the physiology that underlie how viruses may trigger cancers, neurological disease, and postviral fatiguing syndromes.

Learn More >

Clinical updates on phantom limb pain.

Most patients with amputation (up to 80%) suffer from phantom limb pain postsurgery. These are often multimorbid patients who also have multiple risk factors for the development of chronic pain from a pain medicine perspective. Surgical removal of the body part and sectioning of peripheral nerves result in a lack of afferent feedback, followed by neuroplastic changes in the sensorimotor cortex. The experience of severe pain, peripheral, spinal, and cortical sensitization mechanisms, and changes in the body scheme contribute to chronic phantom limb pain. Psychosocial factors may also affect the course and the severity of the pain. Modern amputation medicine is an interdisciplinary responsibility.

Learn More >

The role of regional anaesthesia and multimodal analgesia in the prevention of chronic postoperative pain: a narrative review.

Effective prevention of chronic postoperative pain is an important clinical goal, informed by a growing body of studies. Peri-operative regional anaesthesia remains one of the most important tools in the multimodal analgesic toolbox, blocking injury-induced activation and sensitisation of both the peripheral and central nervous system. We review the definition and taxonomy of chronic postoperative pain, its mechanistic basis and the most recent evidence for the preventative potential of multimodal analgesia, with a special focus on regional anaesthesia. While regional anaesthesia targets several important aspects of the mechanistic pathway leading to chronic postoperative pain, evidence for its efficacy is still mixed, possibly owing to the heterogeneity of risk profiles within the surgical patient, but also to variation in techniques and medications reported in the literature.

Learn More >

Predatory journals enter biomedical databases through public funding.

Learn More >

The early influence of COVID-19 pandemic-associated restrictions on pain, mood, and everyday life of patients with painful polyneuropathy.

The SARS-Cov-2 pandemic requires special attention on its psychological effects and the impact on patients with chronic pain.

Learn More >

Attributes Germane to Temporomandibular Disorders and Their Associations with Five Chronic Overlapping Pain Conditions.

To investigate whether TMD-related characteristics are indeed specific to TMD or whether they are also associated with other chronic overlapping pain conditions (COPCs).

Learn More >

Altered pain processing in patients with type 1 and 2 diabetes: systematic review and meta-analysis of pain detection thresholds and pain modulation mechanisms.

The first signs of diabetic neuropathy typically result from small-diameter nerve fiber dysfunction. This review synthesized the evidence for small-diameter nerve fiber neuropathy measured via quantitative sensory testing (QST) in patients with diabetes with and without painful and non-painful neuropathies. Electronic databases were searched to identify studies in patients with diabetes with at least one QST measure reflecting small-diameter nerve fiber function (thermal or electrical pain detection threshold, contact heat-evoked potentials, temporal summation or conditioned pain modulation). Four groups were compared: patients with diabetes (1) without neuropathy, (2) with non-painful diabetic neuropathy, (3) with painful diabetic neuropathy and (4) healthy individuals. Recommended methods were used for article identification, selection, risk of bias assessment, data extraction and analysis. For the meta-analyses, data were pooled using random-effect models. Twenty-seven studies with 2422 participants met selection criteria; 18 studies were included in the meta-analysis. Patients with diabetes without symptoms of neuropathy already showed loss of nerve function for heat (standardized mean difference (SMD): 0.52, p<0.001), cold (SMD: -0.71, p=0.01) and electrical pain thresholds (SMD: 1.26, p=0.01). Patients with non-painful neuropathy had greater loss of function in heat pain threshold (SMD: 0.75, p=0.01) and electrical stimuli (SMD: 0.55, p=0.03) compared with patients with diabetes without neuropathy. Patients with painful diabetic neuropathy exhibited a greater loss of function in heat pain threshold (SMD: 0.55, p=0.005) compared with patients with non-painful diabetic neuropathy. Small-diameter nerve fiber function deteriorates progressively in patients with diabetes. Because the dysfunction is already present before symptoms occur, early detection is possible, which may assist in prevention and effective management of diabetic neuropathy.

Learn More >

Putative roles of SLC7A5 (LAT1) transporter in pain.

Large amino acid transporter 1 (LAT1), also known as SLC7A5, is an essential amino acid transporter that forms a heterodimeric complex with the glycoprotein cell-surface antigen heavy chain (4F2hc (CD98, SLC3A2)). Within nociceptive pathways, LAT1 is expressed in the dorsal root ganglia and spinal cord. Although LAT1 expression is upregulated following spinal cord injury, little is known about LAT1 in neuropathic pain. To date, only circumstantial evidence supports LAT1/4F2hc's role in pain. Notably, LAT1's expression and regulation link it to key cell types and pathways implicated in pain. Transcriptional regulation of LAT1 expression occurs via the Wnt/frizzled/β-catenin signal transduction pathway, which has been shown to be involved in chronic pain. The LAT1/4F2hc complex may also be involved in pain pathways related to T- and B-cells. LAT1's expression induces activation of the mammalian target of rapamycin (mTOR) signaling axis, which is involved in inflammation and neuropathic pain. Similarly, hypoxia and cancer induce activation of hypoxia-inducible factor 2 alpha, promoting not only LAT1's expression but also mTORC1's activation. Perhaps the strongest evidence linking LAT1 to pain is its interactions with key voltage-gated ion channels connected to nociception, namely the voltage-gated potassium channels Kv1.1 and Kv1.2 and the voltage-gated sodium channel Nav1.7. Through functional regulation of these channels, LAT1 may play a role in governing the excitatory to inhibitory ratio which is altered in chronic neuropathic pain states. Remarkably, the most direct role for LAT1 in pain is to mediate the influx of gabapentin and pregabalin, two first-line neuropathic pain drugs, that indirectly inhibit high voltage-activated calcium channel auxiliary subunit α2δ-1. In this review, we discuss the expression, regulation, relevant signaling pathways, and protein interactions of LAT1 that may link it to the development and/or maintenance of pain. We hypothesize that LAT1 expressed in nociceptive pathways may be a viable new target in pain.

Learn More >

Satellite glial cells in sensory ganglia express functional transient receptor potential ankyrin 1 that is sensitized in neuropathic and inflammatory pain.

Transient receptor potential ankyrin 1 (TRPA1) is well documented as an important molecule in pain hypersensitivity following inflammation and nerve injury and in many other cellular biological processes. Here, we show that TRPA1 is expressed not only by sensory neurons of the dorsal root ganglia (DRG) but also in their adjacent satellite glial cells (SGCs), as well as nonmyelinating Schwann cells. TRPA1 immunoreactivity is also detected in various cutaneous structures of sensory neuronal terminals, including small and large caliber cutaneous sensory fibers and endings. The SGC-expressed TRPA1 is functional. Like DRG neurons, dissociated SGCs exhibit a robust response to the TRPA1-selective agonist allyl isothiocyanate (AITC) by an increase of intracellular Ca concentration ([Ca]). These responses are abolished by the TRPA1 antagonist HC030031 and are absent in SGCs and neurons from global TRPA1 null mice. SGCs and neurons harvested from DRG proximal to painful tissue inflammation induced by plantar injection of complete Freund's adjuvant show greater AITC-evoked elevation of [Ca] and slower recovery compared to sham controls. Similar TRPA1 sensitization occurs in both SGCs and neurons during neuropathic pain induced by spared nerve injury. Together, these results show that functional TRPA1 is expressed by sensory ganglia SGCs, and TRPA1 function in SGCs is enhanced after both peripheral inflammation and nerve injury, and suggest that TRPA1 in SGCs may contribute to inflammatory and neuropathic pain.

Learn More >

Modulation of neuroglial interactions using differential target multiplexed spinal cord stimulation in an animal model of neuropathic pain.

Learn More >

Search