I am a
Home I AM A Search Login

Accepted

Share this

Altered glial glutamate transporter expression in descending circuitry and the emergence of pain chronicity.

The glutamate type 1 transporter (GLT1) plays a major role in glutamate homeostasis in the brain. Although alterations of GLT1 activity have been linked to persistent pain, the significance of these changes is poorly understood. Focusing on the rostral ventromedial medulla, a key site in pain modulation, we examined the expression and function of GLT1 and related transcription factor kappa B-motif binding phosphoprotein (KBBP) in rats after adjuvant-induced hind paw inflammation.

Learn More >

Severity of Analgesic Dependence and Medication-overuse Headache.

Medication-overuse headache (MOH) is a common chronic headache caused by overuse of headache analgesics. It has similarities with substance dependence disorders. The treatment of choice for MOH is withdrawal of the offending analgesics. Behavioral brief intervention treatment using methods adapted from substance misuse settings is effective. Here we investigate the severity of analgesics dependence in MOH using the Severity of Dependence Scale (SDS), validate the SDS score against formal substance dependence diagnosis based on the Diagnostic and Statistical Manual of Mental Disorders, 4th edition (DSM-IV) and examine whether the SDS predicts successful withdrawal.

Learn More >

SIRT1 alleviates diabetic neuropathic pain by regulating synaptic plasticity of spinal dorsal horn neurons.

Accumulating evidence has demonstrated that the enhanced synaptic plasticity of nociceptive interneurons in the spinal dorsal horn is the basis of central sensitization in neuropathic pain. Our previous results demonstrate that Sirtuin 1 (SIRT1), a nicotinamide adenosine dinucleotide (NAD+)-dependent deacetylase, alleviates neuropathic pain in type 2 diabetes mellitus (T2DM) rats. SIRT1 has also been reported to regulate synaptic plasticity in different brain neurons. However, the role of SIRT1 in synaptic plasticity of spinal dorsal horn neurons remains unknown. In this study, we found that in the spinal dorsal horn of diabetic neuropathic pain (DNP) rats and db/db mice, decreased SIRT1 expression was accompanied by enhanced structural synaptic plasticity. The levels of post-synaptic density protein 95 (PSD-95), growth associated protein 43 (GAP43) and synaptophysin (SYP) increased in the spinal dorsal horn of DNP rats and db/db mice and in high glucose (HG)-cultured primary spinal neurons. Upregulation of spinal SIRT1 by SIRT1 activator SRT1720 relieved pain behavior, inhibited the enhanced structural synaptic plasticity in DNP rats and db/db mice, and decreased the levels of synapse-associated proteins in DNP rats, db/db mice, and HG-cultured spinal neurons. SIRT1 shRNA induced pain behavior, enhanced structural synaptic plasticity in normal rats, and increased synapse-associated proteins levels in normal rats and spinal neurons. Intrathecal AAV-Cre-EGFP into SIRT1 mice also induced pain behavior and enhanced synaptic plasticity of the spinal dorsal horn neurons. These results suggest that SIRT1 plays an important role in the progression of DNP by regulating synaptic plasticity of spinal dorsal horn neurons.

Learn More >

Tanezumab for Painful Osteoarthritis.

Learn More >

Fibroblast growth factor homologous factor 2 (FGF-13) associates with Nav1.7 in DRG neurons and alters its current properties in an isoform-dependent manner.

Fibroblast Growth Factor Homologous Factors (FHF) constitute a subfamily of FGF proteins with four prototypes (FHF1-4; also known as FGF11-14). FHF proteins have been shown to bind directly to the membrane-proximal segment of the C-terminus in voltage-gated sodium channels (Nav), and regulate current density, availability, and frequency-dependent inhibition of sodium currents. Members of the FHF2 subfamily, FHF2A and FHF2B, differ in the length and sequence of their N-termini, and, importantly, differentially regulate Nav1.6 gating properties. Using immunohistochemistry, we show that FHF2 isoforms are expressed in adult dorsal root ganglion (DRG) neurons where they co-localize with Nav1.6 and Nav1.7. FHF2A and FHF2B show differential localization in neuronal compartments in DRG neurons, and levels of expression of FHF2 factors are down-regulated following sciatic nerve axotomy. Because Nav1.7 in nociceptors plays a critical role in pain, we reasoned that its interaction with FHF2 isoforms might regulate its current properties. Using whole-cell patch clamp in heterologous expression systems, we show that the expression of FHF2A in HEK293 cell line stably expressing Nav1.7 channels causes no change in activation, whereas FHF2B depolarizes activation. Both FHF2 isoforms depolarize fast-inactivation. Additionally, FHF2A causes an accumulation of inactivated channels at all frequencies tested due to a slowing of recovery from inactivation, whereas FHF2B has little effect on these properties of Nav1.7. Measurements of the Nav1.7 current in DRG neurons in which FHF2 levels are knocked down confirmed the effects of FHF2A on repriming, and FHF2B on activation, however FHF2A and B did not have an effect on fast inactivation. Our data demonstrates that FHF2 does indeed regulate the current properties of Nav1.7 and does so in an isoform and cell-specific manner.

Learn More >

ICD-10 codes for the study of chronic overlapping pain conditions in administrative databases.

Chronic Overlapping Pain Conditions (COPCs) are a set of painful chronic conditions characterized by high levels of co-occurrence. It has been hypothesized that COPCs co-occur in many cases because of common neurobiological vulnerabilities. In practice, most research on COPCs has focused upon a single index condition with little effort to assess comorbid painful conditions. This likely means that important phenotypic differences within a sample are obscured. The International Classification of Diseases (ICD) coding system contains many diagnostic classifications that may be applied to individual COPCs, but there is currently no agreed upon set of codes for identifying and studying each of the COPCs. Here we seek to address this issue through three related projects: a) we first compile a set of ICD-10 codes from expert panels for ten common COPCs, b) we then use natural language searches of medical records to validate the presence of COPCs in association with the proposed expert codes, c) finally, we apply the resulting codes to a large administrative medical database to derive estimates of overlap between the ten conditions as a demonstration project. The codes presented can facilitate administrative database research on COPCs. Perspective: This article presents a set of ICD-10 codes that researchers can use to explore the presence and overlap of Chronic Overlapping Pain Conditions (COPCs) in administrative databases. This may serve as a tool for estimating samples for research,exploring comorbidities and treatments for individual COPCs, and identifying mechanisms associated with their overlap.

Learn More >

Glucagon-Like Peptide-1 Receptor Agonist Treatment Does Not Reduce Abuse-Related Effects of Opioid Drugs.

Dependence on opioids and the number of opioid overdose deaths are serious and escalating public health problems, but medication-assisted treatments for opioid addiction remain inadequate for many patients. Glucagon-like pepide-1 (GLP-1) is a gut hormone and neuropeptide with actions in peripheral tissues and in the brain, including regulation of blood glucose and food intake. GLP-1 analogs, which are approved diabetes medications, can reduce the reinforcing and rewarding effects of alcohol, cocaine, amphetamine, and nicotine in rodents. Investigations on effects of GLP-1 analogs on opioid reward and reinforcement have not been reported. We assessed the effects of the GLP-1 receptor agonist Exendin-4 (Ex4) on opioid-related behaviors in male mice, i.e., morphine-conditioned place preference (CPP), intravenous self-administration (IVSA) of the short-acting synthetic opioid remifentanil, naltrexone-precipitated morphine withdrawal, morphine analgesia (male and female mice), and locomotor activity. Ex4 treatment had no effect on morphine-induced CPP, withdrawal, or hyperlocomotion. Ex4 failed to decrease remifentanil self-administration, if anything reinforcing effects of remifentanil appeared increased in Ex4-treated mice relative to saline. Ex4 did not significantly affect analgesia. In contrast, Ex4 dose dependently decreased oral alcohol self-administration, and suppressed spontaneous locomotor activity. Taken together, Ex4 did not attenuate the addiction-related behavioral effects of opioids, indicating that GLP-1 analogs would not be useful medications in the treatment of opioid addiction. This difference between opioids and other drug classes investigated to date may shed light on the mechanism of action of GLP-1 receptor treatment in the addictive effects of alcohol, central stimulants, and nicotine.

Learn More >

Adenosine A3 receptor activation inhibits pronociceptive N-type Ca2+ currents and cell excitability in dorsal root ganglion neurons.

Recently, studies have focused on the antihyperalgesic activity of the A3 adenosine receptor (A3AR) in several chronic pain models, but the cellular and molecular basis of this effect is still unknown. Here, we investigated the expression and functional effects of A3AR on the excitability of small- to medium-sized, capsaicin-sensitive, dorsal root ganglion (DRG) neurons isolated from 3- to 4-week-old rats. Real-time quantitative polymerase chain reaction experiments and immunofluorescence analysis revealed A3AR expression in DRG neurons. Patch-clamp experiments demonstrated that 2 distinct A3AR agonists, Cl-IB-MECA and the highly selective MRS5980, inhibited Ca-activated K (KCa) currents evoked by a voltage-ramp protocol. This effect was dependent on a reduction in Ca influx via N-type voltage-dependent Ca channels, as Cl-IB-MECA-induced inhibition was sensitive to the N-type blocker PD173212 but not to the L-type blocker, lacidipine. The endogenous agonist adenosine also reduced N-type Ca currents, and its effect was inhibited by 56% in the presence of A3AR antagonist MRS1523, demonstrating that the majority of adenosine's effect is mediated by this receptor subtype. Current-clamp recordings demonstrated that neuronal firing of rat DRG neurons was also significantly reduced by A3AR activation in a MRS1523-sensitive but PD173212-insensitive manner. Intracellular Ca measurements confirmed the inhibitory role of A3AR on DRG neuronal firing. We conclude that pain-relieving effects observed on A3AR activation could be mediated through N-type Ca channel block and action potential inhibition as independent mechanisms in isolated rat DRG neurons. These findings support A3AR-based therapy as a viable approach to alleviate pain in different pathologies.

Learn More >

Drive Times to Opioid Treatment Programs in Urban and Rural Counties in 5 US States.

Learn More >

Voluntary exercise reduces both chemotherapy-induced neuropathic nociception and deficits in hippocampal cellular proliferation in a mouse model of paclitaxel-induced peripheral neuropathy.

Chemotherapy-induced peripheral neuropathy (CIPN) is a common dose-limiting side-effect of all major chemotherapeutic agents. Here, we explored efficacy of voluntary exercise as a nonpharmacological strategy for suppressing two distinct adverse side effects of chemotherapy treatment. We evaluated whether voluntary running would suppress both neuropathic pain and deficits in hippocampal cell proliferation in a mouse model of CIPN induced by the taxane chemotherapeutic agent paclitaxel. Mice were given free access to running wheels or were housed without running wheels during one of three different intervention phases: 1) during the onset (i.e. development phase) of paclitaxel-induced neuropathy, 2) prior to dosing with paclitaxel or its vehicle, or 3) following the establishment (i.e. maintenance phase) of paclitaxel-induced neuropathy. Paclitaxel treatment did not alter running wheel behavior relative to vehicle-treated animals in any study. Animals that engaged in voluntary running during the development phase of paclitaxel-induced neuropathy failed to display mechanical or cold hypersensitivities relative to sedentary control animals that did not have access to running wheels. A prior history of voluntary running delayed the onset of, but did not fully prevent, development of paclitaxel-induced neuropathic pain behavior. Voluntary running reduced already established mechanical and cold allodynia induced by paclitaxel. Importantly, voluntary running did not alter mechanical or cold responsivity in vehicle-treated animals, suggesting that the observed antinociceptive effect of exercise was dependent upon the presence of the pathological pain state. In the same animals evaluated for nociceptive responding, paclitaxel also reduced cellular proliferation but not cellular survival in the dentate gyrus of the hippocampus, as measured by immunohistochemistry for Ki67 and BrdU expression, respectively. Voluntary running abrogated paclitaxel-induced reductions in cellular proliferation to levels observed in vehicle-treated mice and also increased BrdU expression levels irrespective of chemotherapy treatment. Our studies support the hypothesis that voluntary exercise may be beneficial in suppressing both neuropathic pain and markers of hippocampal cellular function that are impacted by toxic challenge with chemotherapeutic agents.

Learn More >

Search