I am a
Home I AM A Search Login

Accepted

Share this

Genetic mapping in Diversity Outbred mice identifies a Trpa1 variant influencing late-phase formalin response.

Identification of genetic variants that influence susceptibility to pain is key to identifying molecular mechanisms and targets for effective and safe therapeutic alternatives to opioids. To identify genes and variants associated with persistent pain, we measured late-phase response to formalin injection in 275 male and female Diversity Outbred mice genotyped for over 70,000 single nucleotide polymorphisms. One quantitative trait locus reached genome-wide significance on chromosome 1 with a support interval of 3.1 Mb. This locus, Nociq4 (nociceptive sensitivity quantitative trait locus 4; MGI: 5661503), harbors the well-known pain gene Trpa1 (transient receptor potential cation channel, subfamily A, member 1). Trpa1 is a cation channel known to play an important role in acute and chronic pain in both humans and mice. Analysis of Diversity Outbred founder strain allele effects revealed a significant effect of the CAST/EiJ allele at Trpa1, with CAST/EiJ carrier mice showing an early, but not late, response to formalin relative to carriers of the 7 other inbred founder alleles (A/J, C57BL/6J, 129S1/SvImJ, NOD/ShiLtJ, NZO/HlLtJ, PWK/PhJ, and WSB/EiJ). We characterized possible functional consequences of sequence variants in Trpa1 by assessing channel conductance, TRPA1-TRPV1 interactions, and isoform expression. The phenotypic differences observed in CAST/EiJ relative to C57BL/6J carriers were best explained by Trpa1 isoform expression differences, implicating a splice junction variant as the causal functional variant. This study demonstrates the utility of advanced, high-precision genetic mapping populations in resolving specific molecular mechanisms of variation in pain sensitivity.

Learn More >

Calcium Imaging of Parvalbumin Neurons in the Dorsal Root Ganglia.

We investigated the calcium dynamics of dorsal root ganglion (DRG) neurons using transgenic mice to target expression of the genetically encoded calcium indicator (GECI), GCaMP6s, to a subset of neurons containing parvalbumin (PV), a calcium-binding protein present in proprioceptors and low-threshold mechanoreceptors. This study provides the first analysis of GECI calcium transient parameters from large-diameter DRG neurons. Our approach generated calcium transients of consistent shape and time-course, with quantifiable characteristics. Four parameters of calcium transients were determined to vary independently from each other and thus are likely influenced by different calcium-regulating mechanisms: peak amplitude, rise time (RT), decay time, and recovery time. Pooled analysis of 188 neurons demonstrated unimodal distributions, providing evidence that PV+ DRG neurons regulate calcium similarly as a population despite their differences in size, electrical properties, and functional sensitivities. Calcium transients increased in size with elevated extracellular calcium, longer trains of action potentials, and higher stimulation frequencies. RT and decay time increased with the addition of the selective sarco/endoplasmic reticulum calcium ATPases (SERCA) blocker, thapsigargin (TG), while peak amplitude and recovery time remained the same. When elevating bath pH to 8.8 to block plasma-membrane calcium ATPases (PMCA), all measured parameters significantly increased. These results illustrate that GECI calcium transients provide sufficient resolution to detect changes in electrical activity and intracellular calcium concentration, as well as discern information about the activity of specific subclasses of calcium regulatory mechanisms.

Learn More >

Skilled reaching deterioration contralateral to cervical hemicontusion in rats is reversed by pregabalin treatment conditional upon its early administration.

Learn More >

Imidazoline Receptor System: The Past, the Present, and the Future.

Imidazoline receptors historically referred to a family of nonadrenergic binding sites that recognize compounds with an imidazoline moiety, although this has proven to be an oversimplification. For example, none of the proposed endogenous ligands for imidazoline receptors contain an imidazoline moiety but they are diverse in their chemical structure. Three receptor subtypes (I, I, and I) have been proposed and the understanding of each has seen differing progress over the decades. I receptors partially mediate the central hypotensive effects of clonidine-like drugs. Moxonidine and rilmenidine have better therapeutic profiles (fewer side effects) than clonidine as antihypertensive drugs, thought to be due to their higher I/-adrenoceptor selectivity. Newer I receptor agonists such as LNP599 [3-chloro-2-methyl-phenyl)-(4-methyl-4,5-dihydro-3-pyrrol-2-yl)-amine hydrochloride] have little to no activity on -adrenoceptors and demonstrate promising therapeutic potential for hypertension and metabolic syndrome. I receptors associate with several distinct proteins, but the identities of these proteins remain elusive. I receptor agonists have demonstrated various centrally mediated effects including antinociception and neuroprotection. A new I receptor agonist, CR4056 [2-phenyl-6-(1-imidazol-1yl) quinazoline], demonstrated clear analgesic activity in a recently completed phase II clinical trial and holds great promise as a novel I receptor-based first-in-class nonopioid analgesic. The understanding of I receptors is relatively limited. Existing data suggest that I receptors may represent a binding site at the Kir6.2-subtype ATP-sensitive potassium channels in pancreatic -cells and may be involved in insulin secretion. Despite the elusive nature of their molecular identities, recent progress on drug discovery targeting imidazoline receptors (I and I) demonstrates the exciting potential of these compounds to elicit neuroprotection and to treat various disorders such as hypertension, metabolic syndrome, and chronic pain.

Learn More >

Excitatory neurons are more disinhibited than inhibitory neurons by chloride dysregulation in the spinal dorsal horn.

Neuropathic pain is a debilitating condition caused by the abnormal processing of somatosensory input. Synaptic inhibition in the spinal dorsal horn plays a key role in that processing. Mechanical allodynia – the misperception of light touch as painful – occurs when inhibition is compromised. Disinhibition is due primarily to chloride dysregulation caused by hypofunction of the potassium-chloride co-transporter KCC2. Here we show, in rats, that excitatory neurons are disproportionately affected. This is not because chloride is differentially dysregulated in excitatory and inhibitory neurons, but, rather, because excitatory neurons rely more heavily on inhibition to counterbalance strong excitation. Receptive fields in both cell types have a center-surround organization but disinhibition unmasks more excitatory input to excitatory neurons. Differences in intrinsic excitability also affect how chloride dysregulation affects spiking. These results deepen understanding of how excitation and inhibition are normally balanced in the spinal dorsal horn, and how their imbalance disrupts somatosensory processing.

Learn More >

Synchronous stimulation with light and heat induces body ownership and reduces pain perception.

In this study, we investigated whether illusionary body ownership over artificial hands and non-corporeal objects modulates pain perception. Previous research has yielded to mixed results, but has separated painful stimulation used to test pain perception from the stimulation that was used to induce the illusion. Here, we used a variant of the rubber hand illusion (RHI) paradigm and induced the illusion directly via a combination of visual and painful stimuli. We presented heat pain stimuli at the real hand and visual stimuli beneath a rubber hand (part1), or a glass ball (part2). Illusion ratings were higher and pain ratings were lower in the synchronous compared to the asynchronous condition in both parts of the experiment. This study demonstrated the successful induction of a body illusion using a new visual-thermal method with painful stimuli. We showed that the RHI and interestingly also the glass ball has an analgesic effect on the perception of the heat pain stimuli. Our data suggests that induced ownership over artificial limbs but also over non-corporeal objects can reduce the perceived pain perception. This might be mediated via a partial referral of the perceived location of pain or respectively a distribution of pain over two locations. Perspective: This article presents a new visual-thermal method with painful stimuli for the induction of the Rubber Hand Illusion. An illusionary body ownership over artificial hands and non-corporeal has an analgesic effects on the perception of pain. Similar approaches might be useful to alleviate chronic pain, but needs further testing.

Learn More >

The Association Between the Supply of Nonpharmacologic Providers, Use of Nonpharmacologic Pain Treatments and High-risk Opioid Prescription Patterns Among Medicare Beneficiaries With Persistent Musculoskeletal Pain.

Opioids are prescribed more frequently than nonpharmacologic treatments for persistent musculoskeletal pain (MSP). We estimate the association between the supply of physical therapy (PT) and mental health (MH) providers and early nonpharmacologic service use with high-risk opioid prescriptions among Medicare beneficiaries with persistent MSP.

Learn More >

Three-dimensional neuroanatomy of the intra-epidermal nervous system.

Intra-epidermal nerve fibers (IENFs) are presumed to comprise mainly of itch-transmitting nerve fibers, and variations in their density have been studied in itch disorders; epidermal nerve fiber density is also a criterion in diagnosing small fiber neuropathy in clinical neurological practice. IENFs are typically identified with 2-dimensional (2D) histological slides, but 2D sections do not accurately represent nerves, which branch out in three-dimensions (3D).

Learn More >

ChrOnic pain self-ManagementMent support with pain science EducatioN and exerCisE (COMMENCE) for people with chronic pain and multiple comorbidities: A randomized controlled trial.

To investigate the effectiveness chronic pain self-management support with pain science education and exercise (COMMENCE) on improving function, pain interference, work status, pain intensity, fatigue, psychological factors associated with pain, health care visits, satisfaction, and perceived change compared to usual care.

Learn More >

Factors Associated with Sleep Quality in Patients with Chronic Widespread Pain Attending Multidisciplinary Treatment.

(i) To investigate the prevalence of poor sleep quality and (ii) to explore the associations between clinical, cognitive and emotional factors and quality of sleep in patients with chronic widespread pain (CWP) attending multidisciplinary treatment.

Learn More >

Search