I am a
Home I AM A Search Login

Accepted

Share this

NEJM Knowledge+ Pain Management and Opioids – A New Adaptive Learning Module.

Learn More >

Distinct Modes of Presynaptic Inhibition of Cutaneous Afferents and Their Functions in Behavior.

Presynaptic inhibition (PSI) of primary sensory neurons is implicated in controlling gain and acuity in sensory systems. Here, we define circuit mechanisms and functions of PSI of cutaneous somatosensory neuron inputs to the spinal cord. We observed that PSI can be evoked by different sensory neuron populations and mediated through at least two distinct dorsal horn circuit mechanisms. Low-threshold cutaneous afferents evoke a GABA-receptor-dependent form of PSI that inhibits similar afferent subtypes, whereas small-diameter afferents predominantly evoke an NMDA-receptor-dependent form of PSI that inhibits large-diameter fibers. Behaviorally, loss of either GABA receptors (GABARs) or NMDA receptors (NMDARs) in primary afferents leads to tactile hypersensitivity across skin types, and loss of GABARs, but not NMDARs, leads to impaired texture discrimination. Post-weaning age loss of either GABARs or NMDARs in somatosensory neurons causes systemic behavioral abnormalities, revealing critical roles of two distinct modes of PSI of somatosensory afferents in adolescence and throughout adulthood.

Learn More >

The Mechanosensitive Ion Channel Piezo Inhibits Axon Regeneration.

Neurons exhibit a limited ability of repair. Given that mechanical forces affect neuronal outgrowth, it is important to investigate whether mechanosensitive ion channels may regulate axon regeneration. Here, we show that DmPiezo, a Ca-permeable non-selective cation channel, functions as an intrinsic inhibitor for axon regeneration in Drosophila. DmPiezo activation during axon regeneration induces local Ca transients at the growth cone, leading to activation of nitric oxide synthase and the downstream cGMP kinase Foraging or PKG to restrict axon regrowth. Loss of DmPiezo enhances axon regeneration of sensory neurons in the peripheral and CNS. Conditional knockout of its mammalian homolog Piezo1 in vivo accelerates regeneration, while its pharmacological activation in vitro modestly reduces regeneration, suggesting the role of Piezo in inhibiting regeneration may be evolutionarily conserved. These findings provide a precedent for the involvement of mechanosensitive channels in axon regeneration and add a potential target for modulating nervous system repair.

Learn More >

Priming of adult incision response by early life injury: neonatal microglial inhibition has persistent but sexually dimorphic effects in adult rats.

Neonatal hindpaw incision primes developing spinal nociceptive circuitry, resulting in enhanced hyperalgesia following re-injury in adulthood. Spinal microglia contribute to this persistent effect and microglial inhibition at the time of adult re-incision blocks the enhanced hyperalgesia. Here, we pharmacologically inhibited microglial function with systemic minocycline or intrathecal SB203580 at the time of neonatal incision and evaluated sex-dependent differences following adult re-incision. Incision in adult male and female rats induced equivalent hyperalgesia and spinal dorsal horn expression of genes associated with microglial proliferation () and transformation to a reactive phenotype (). In control adults with prior neonatal incision, the enhanced degree and duration of incision-induced hyperalgesia and spinal microglial responses to re-incision were equivalent in males and females. However, microglial inhibition at the time of the neonatal incision revealed sex-dependent effects: the persistent mechanical and thermal hyperalgesia following re-incision in adulthood was prevented in males but unaffected in females. Similarly, re-incision induced and gene expression was downregulated in males, but not in females following neonatal incision with minocycline. To evaluate the distribution of re-incision hyperalgesia, prior neonatal incision was performed at different body sites. Hyperalgesia was maximal when the same paw was re-incised, and was increased following prior incision at ipsilateral, but not contralateral sites; supporting a segmentally restricted spinal mechanism. These data highlight the contribution of spinal microglial mechanisms to persistent effects of early-life injury in males, and sex-dependent differences in the ability of microglial inhibition to prevent the transition to a persistent pain state spans developmental stages. Following the same surgery, some patients develop persistent pain. Contributory mechanisms are not fully understood, but early-life experience and sex/gender may influence the transition to chronic pain. Surgery and painful procedural interventions in vulnerable preterm neonates are associated with long-term alterations in somatosensory function and pain that differ in males and females. Surgical injury in neonatal rodents primes the developing nociceptive system and enhances re-injury response in adulthood. Neuroimmune interactions are critical mediators of persistent pain, but sex-dependent differences in spinal neuroglial signaling influence the efficacy of microglial inhibitors following adult injury. Neonatal microglial inhibition has beneficial long-term effects on re-injury response in adult males only, emphasizing the importance of evaluating sex-dependent differences at all ages in pre-clinical studies.

Learn More >

Neuropeptide PEN and its receptor GPR83; Distribution, Signaling and Regulation.

Neuropeptides are peptide neuromodulators that are expressed by neurons and act on neural targets by activating neuropeptide receptors1. These receptors serve as therapeutic targets for the treatment of a number of pathophysiological conditions, including obesity, pain and addiction2-6. Major technological advances in the 1980s involving improved sensitivity of peptide purification methods and single neuron mRNA sequencing techniques have led to an explosion in the number of newly discovered neuropeptides7. However, to date, receptors for many of these neuropeptides remain largely unknown. In addition, currently there are a number of "orphan" G-protein-coupled receptors (GPCRs) for which endogenous ligands or function are yet to be identified8, 9.These "orphan" neuropeptides and GPCRs represent an untapped resource for the development of therapeutics to treat chronic diseases including drug abuse disorders, obesity and neuropathic pain. With this in mind much effort has been put towards deorphanizing these "orphan" peptides/GPCRs. Here, we summarize current insights into one such relationship: that between the neuropeptide PEN and the GPCR named GPR83. This intriguing system promises to deepen our current understanding of neuropeptide/GPCR systems, but also highlights the necessity for further technological advances in order to fully understand its complexity.

Learn More >

Mesenchymal stem cells from bone marrow attenuated the chronic morphine-induced cAMP accumulation in vitro.

Even though opioid tolerance is both a common and a major challenge in medicine, treatment with opioids is currently the primary method used to treat acute and chronic pain. The cAMP accumulation induced by chronic morphine is regarded as one of the molecular mechanisms leading to its tolerance and dependence characteristics. In the present study, we differentiated SH-SY5Y cells into neuron-like cells by retinoic acid (RA), pretreated these cells with morphine, and tested their cAMP levels under different conditions, including co-culture with bone marrow-derived human mesenchymal stem cells from bone marrow (hMSCs-BM) at various hMSCs-BM/SH-SY5Y ratios (1:5, 1:25, and 1:125), by direct cell-to-cell contact or without cell-to-cell contact, and by conditioned medium (CM) from hMSCs-BM. We found that chronic treatment with 10 μM morphine led to cAMP upregulation in those RA-differentiated SH-SY5Y cells while the morphine induced-cAMP accumulation was significantly attenuated by co-culturing with hMSCs-BM by direct cell-to-cell contact at a lower cell ratio (1:25) and a higher cell ratio (1:5). However, at neither the low or higher cell ratios could hMSCs-BM inhibit morphine-induced cAMP accumulation in RA-differentiated SH-SY5Y cells without cell-to-cell contact. In summary, hMSCs-BM can successfully inhibit morphine-induced cAMP up-regulation in RA-differentiated SH-SY5Y cells by cell-to-cell contact at a higher ratio, suggesting that hMSCs-BM may serve as valuable therapeutics to minimize the risk of drug abuse and addiction in the treatment of morphine tolerance and dependence.

Learn More >

Homozygous NMNAT2 mutation in sisters with polyneuropathy and erythromelalgia.

Learn More >

Targeting prokineticin system counteracts hypersensitivity, neuroinflammation, and tissue damage in a mouse model of bortezomib-induced peripheral neuropathy.

Neuropathy is a dose-limiting side effect of many chemotherapeutics, including bortezomib. The mechanisms underlying this condition are not fully elucidated even if a contribution of neuroinflammation was suggested. Here, we investigated the role of a chemokine family, the prokineticins (PKs), in the development of bortezomib-induced peripheral neuropathy (BIPN), and we used a PK receptor antagonist to counteract the development and progression of the pathology.

Learn More >

Therapeutic novelties in migraine: new drugs, new hope?

In the past decade, migraine research has identified novel drug targets. In this review, we discuss recent data on emerging anti-migraine therapies.

Learn More >

Large-scale plasma metabolome analysis reveals alterations in HDL metabolism in migraine.

To identify a plasma metabolomic biomarker signature for migraine.

Learn More >

Search