I am a
Home I AM A Search Login

Accepted

Share this

Morphine immunomodulation prolongs inflammatory and postoperative pain while the novel analgesic ZH853 accelerates recovery and protects against latent sensitization.

Numerous studies have identified the proinflammatory, pronociceptive effects of morphine which ultimately exacerbate pain. Our novel endomorphin analog ZH853 does not produce proinflammatory effects on its own and gives potent, long-lasting analgesia. This study investigates whether ZH853's lack of interaction with the neuroimmune system reduces the risk of prolonged pain.

Learn More >

Is suffering from chronic pain causing cardiovascular death?

Learn More >

MRGPRX4 is a G protein-coupled receptor activated by bile acids that may contribute to cholestatic pruritus.

Patients suffering from cholestasis, the slowing or stoppage of bile flow, commonly report experiencing an intense, chronic itch. Numerous pruritogens are up-regulated in cholestatic patient sera, including bile acids (BAs). Acute injection of BAs results in itch in both mice and humans, and BA-modulating therapy is effective in controlling patient itch. Here, we present evidence that human sensory neuron-expressed Mas-related G protein-coupled receptor X4 (MRGPRX4), an orphan member of the family of GPCRs, is a BA receptor. Using Ca imaging, we determined that pathophysiologically relevant levels of numerous BAs activated MRGPRX4. No mouse Mrgpr orthologs were activated by BAs. To assess the in vivo relevance of BA activation of MRGPRX4, we generated a humanized mouse with targeted expression of MRGPRX4 in itch-encoding sensory neurons. BAs activated MRGPRX4 sensory neurons at higher levels compared with WT neurons. Compared with control animals, MRGPRX4 mice scratched more upon acute injection of BAs and in a model of cholestatic itch. Overall, these data suggest that targeting MRGPRX4 is a promising strategy for alleviating cholestatic itch.

Learn More >

Sphingosine-1-phosphate receptor 1 activation in astrocytes contributes to neuropathic pain.

Neuropathic pain afflicts millions of individuals and represents a major health problem for which there is limited effective and safe therapy. Emerging literature links altered sphingolipid metabolism to nociceptive processing. However, the neuropharmacology of sphingolipid signaling in the central nervous system in the context of chronic pain remains largely unexplored and controversial. We now provide evidence that sphingosine-1-phosphate (S1P) generated in the dorsal horn of the spinal cord in response to nerve injury drives neuropathic pain by selectively activating the S1P receptor subtype 1 (S1PR1) in astrocytes. Accordingly, genetic and pharmacological inhibition of S1PR1 with multiple antagonists in distinct chemical classes, but not agonists, attenuated and even reversed neuropathic pain in rodents of both sexes and in two models of traumatic nerve injury. These S1PR1 antagonists retained their ability to inhibit neuropathic pain during sustained drug administration, and their effects were independent of endogenous opioid circuits. Moreover, mice with astrocyte-specific knockout of did not develop neuropathic pain following nerve injury, thereby identifying astrocytes as the primary cellular substrate of S1PR1 activity. On a molecular level, the beneficial reductions in neuropathic pain resulting from S1PR1 inhibition were driven by interleukin 10 (IL-10), a potent neuroprotective and anti-inflammatory cytokine. Collectively, our results provide fundamental neurobiological insights that identify the cellular and molecular mechanisms engaged by the S1PR1 axis in neuropathic pain and establish S1PR1 as a target for therapeutic intervention with S1PR1 antagonists as a class of nonnarcotic analgesics.

Learn More >

Activation of Mast-Cell-Expressed Mas-Related G-Protein-Coupled Receptors Drives Non-histaminergic Itch.

Classical itch studies have focused on immunoglobulin E (IgE)-mediated mast cell activation and histamine release. Recently, members of the Mas-related G-protein-coupled receptor (Mrgpr) family have been identified as mast cell receptors, but their role in itch is unclear. Here, we report that mast cell activation via Mrgprb2 evoked non-histaminergic itch in mice independently of the IgE-Fc epsilon RI (FcεRI)-histamine axis. Compared with IgE-FcεRI stimulation, Mrgprb2 activation of mast cells was distinct in both released substances (histamine, serotonin, and tryptase) and the pattern of activated itch-sensory neurons. Mrgprb2 deficiency decreased itch in multiple preclinical models of allergic contact dermatitis (ACD), a pruritic inflammatory skin disorder, and both mast cell number and PAMP1-20 concentrations (agonist of the human Mrgprb2 homolog, MRGPRX2) were increased in human ACD skin. These findings suggest that this pathway may represent a therapeutic target for treating ACD and mast-cell-associated itch disorders in which antihistamines are ineffective.

Learn More >

Nociceptor Signalling through ion Channel Regulation via GPCRs.

The prime task of nociceptors is the transformation of noxious stimuli into action potentials that are propagated along the neurites of nociceptive neurons from the periphery to the spinal cord. This function of nociceptors relies on the coordinated operation of a variety of ion channels. In this review, we summarize how members of nine different families of ion channels expressed in sensory neurons contribute to nociception. Furthermore, data on 35 different types of G protein coupled receptors are presented, activation of which controls the gating of the aforementioned ion channels. These receptors are not only targeted by more than 20 separate endogenous modulators, but can also be affected by pharmacotherapeutic agents. Thereby, this review provides information on how ion channel modulation via G protein coupled receptors in nociceptors can be exploited to provide improved analgesic therapy.

Learn More >

The contribution of the ankyrin repeat domain of TRPV1 as a thermal module.

Learn More >

Acid and inflammatory sensitisation of naked mole-rat colonic afferent nerves.

Learn More >

Diffusivity parameters of diffusion tensor imaging and apparent diffusion coefficient as imaging markers for predicting the treatment response of patients with trigeminal neuralgia.

OBJECTIVETrigeminal neuralgia (TN) is facial pain that is usually caused by neurovascular compression syndrome and is characterized by suddenly intense and paroxysmal pain. Radiofrequency lesioning (RFL) is one of the major treatments for TN, but the treatment response for RFL is sometimes inconsistent, and the recurrence of TN is not uncommon. This study aimed to estimate the outcome predictors of TN treated with RFL by using the parameters of diffusion tensor imaging (DTI).METHODSFifty-one patients with TN who were treated with RFL were enrolled in the study. MRI was performed in all patients within 1 week before surgery. The visual analog scale was used to evaluate symptom severity at three time points: before, 1 week after, and 3 months after RFL. The involved cisternal segment of the trigeminal nerves was manually selected, and the histograms of each of the diffusivity metrics-including the apparent diffusion coefficient (ADC), fractional anisotropy (FA), axial diffusivity (AD), and radial diffusivity (RD)-were measured. The differences in the means, as well as the kurtosis and skewness of each of the diffusivity metrics between the nonrecurrent and recurrent groups, were then analyzed using the Mann-Whitney U-test.RESULTSThere were significantly lower kurtosis values (a broader peak of the distributional curves) for both FA and ADC in the recurrent group (p = 0.0004 and 0.015, respectively), compared to the nonrecurrent group. The kurtoses of AD and RD, as well as the mean and skewness of all other diffusivity metrics, did not show significant differences between the two groups.CONCLUSIONSThe pretreatment diffusivity metrics of DTI and ADC may be feasible imaging biomarkers for predicting the outcome of TN after RFL. A clarification of the kurtosis value of FA and ADC is helpful for determining the prognosis of patients after RFL.

Learn More >

CB2 receptor deletion on myeloid cells enhanced mechanical allodynia in a mouse model of neuropathic pain.

Neuropathic pain can develop after nerve injury, leading to a chronic condition with spontaneous pain and hyperalgesia. Pain is typically restricted to the side of the injured nerve, but may occasionally spread to the contralateral side, a condition that is often referred to as mirror-image pain. Mechanisms leading to mirror-image pain are not completely understood, but cannabinoid CB2 receptors have been implicated. In this study, we use genetic mouse models to address the question if CB2 receptors on neurons or on microglia/macrophages are involved. First, we show that a GFP reporter protein under control of the CB2 promoter is induced upon partial sciatic nerve ligation in spinal cord, dorsal root ganglia, and highest in sciatic nerve macrophages, but not in neurons. Mice which lack CB2 receptors specifically on myeloid cells (microglia, macrophages) developed a mirror-image allodynia [treatment F = 45.69, p < 0.0001] similar to constitutive CB2 receptor knockout mice [treatment F = 92.41, p < 0.0001]. Such a phenotype was not observed after the deletion of CB2 from neurons [treatment F = 0.1315, p = 0.7180]. This behavioral pain phenotype was accompanied by an increased staining of microglia in the dorsal horn of the spinal cord, as evidenced by an enhanced Iba 1 expression [CB2KO, p = 0.0175; CB2-LysM, p = 0.0425]. Similarly, myeloid-selective knockouts showed an increased expression of the leptin receptor in the injured ipsilateral sciatic nerve, thus further supporting the notion that leptin signaling contributes to the increased neuropathic pain responses of CB2 receptor knockout mice. We conclude that CB2 receptors on microglia and macrophages, but not on neurons, modulate neuropathic pain responses.

Learn More >

Search