I am a
Home I AM A Search Login

Accepted

Share this

What headache services in sub-Saharan Africa? The DREAM program as possible model.

Learn More >

Activation of liver x receptors prevents the spinal LTP induced by skin/muscle retraction in the thigh via SIRT1/NF-Κb pathway.

It has been reported that skin/muscle incision and retraction (SMIR) in the thigh, produces mechanical allodynia in the hind paw, far from the site of incision/retraction. The mechanical allodynia lasts about 22 days, indicating chronic post-operative pain develops. The precise mechanisms, however, are largely unclear. In the current study, we further found that SMIR surgery induced LTP of c-fiber evoked field potentials that lasted at least 4 h. The mRNA and protein level of tumor necrosis factor-alpha (TNFα) and acetylated nuclear factor-kappaB p65 (ac-NF-κB p65) in the lumbar spinal dorsal horn was gradually increased during LTP development, while pretreatment with either TNFα neutralization antibody or NF-κB inhibitor PDTC completely prevented the induction of LTP. Moreover, the expression of Silent information regulator 1 (SIRT1) in the lumbar spinal dorsal horn was decreased and activation of SIRT1 by SRT1720 also prevented the induction of LTP. Importantly, the spinal expression of Liver X receptors (LXRs) was increased, both at mRNA and protein level following SMIR. Application of LXRs agonist T0901317 to the spinal dorsal horn prevented LTP induction following SMIR. Mechanistically, T0901317 enhanced the expression of SIRT1 and decreased the expression of ac-NF-κB p65 and TNFα. Spinal application of SIRT1 antagonist EX-527, 30 min before T0901317 administration, completely blocked the inhibiting effect of T0901317 on LTP, and on expression of ac-NF-κB p65 and TNFα. These results indicated that activation of LXRs prevented SMIR-induced LTP by inhibiting NF-κB/TNFα pathway via increasing SIRT1 expression.

Learn More >

Cognitive Functional Therapy in patients with Non Specific Chronic Low Back Pain A randomized controlled trial 3-year follow up.

This randomized controlled trial investigated the efficacy of cognitive functional therapy (CFT) compared with manual therapy and exercise (MT-EX) for people with non-specific chronic low back pain (NSCLBP) at 3-year follow-up.

Learn More >

Structure and mechanogating of the mammalian tactile channel PIEZO2.

PIEZO2 is a mechanosensitive cation channel that has a key role in sensing touch, tactile pain, breathing and blood pressure. Here we describe the cryo-electron microscopy structure of mouse PIEZO2, which is a three-bladed, propeller-like trimer that comprises 114 transmembrane helices (38 per protomer). Transmembrane helices 1-36 (TM1-36) are folded into nine tandem units of four transmembrane helices each to form the unusual non-planar blades. The three blades are collectively curved into a nano-dome of 28-nm diameter and 10-nm depth, with an extracellular cap-like structure embedded in the centre and a 9-nm-long intracellular beam connecting to the central pore. TM38 and the C-terminal domain are surrounded by the anchor domain and TM37, and enclose the central pore with both transmembrane and cytoplasmic constriction sites. Structural comparison between PIEZO2 and its homologue PIEZO1 reveals that the transmembrane constriction site might act as a transmembrane gate that is controlled by the cap domain. Together, our studies provide insights into the structure and mechanogating mechanism of Piezo channels.

Learn More >

Pilot Study of Injection of OnabotulinumtoxinA Toward the Sphenopalatine Ganglion for the Treatment of Classical Trigeminal Neuralgia.

The sphenopalatine ganglion (SPG) has previously been targeted in trigeminal neuralgia (TN), but its role in this condition has not been established.

Learn More >

Bacterial modulation of visceral sensation: mediators and mechanisms.

The potential role of the intestinal microbiota in modulating visceral pain has received increasing attention during recent years. This has led to the identification of signaling pathways that have been implicated in communication between gut bacteria and peripheral pain pathways. In addition to the well-characterised impact of the microbiota on the immune system, which in turn affects nociceptor excitability, bacteria can modulate visceral afferent pathways by effects on enterocytes, enteroendocrine cells and the neurons themselves. Proteases produced by bacteria, or by host cells in response to bacteria, can increase or decrease the excitability of nociceptive dorsal root ganglion (DRG) neurons depending on the receptor activated. Short chain fatty acids generated by colonic bacteria are involved in gut-brain communication, and intracolonic short chain fatty acids have pro-nociceptive effects in rodents but may be anti-nociceptive in humans. Gut bacteria modulate the synthesis and release of enteroendocrine cell mediators including serotonin and glucagon-like peptide-1, which activate extrinsic afferent neurons. Deciphering the complex interactions between visceral afferent neurons and the gut microbiota may lead to the development of improved probiotic therapies for visceral pain.

Learn More >

Characterization and predictive mechanisms of experimentally induced tension-type headache.

Studies have shown it is possible to elicit a tension-type headache episode in 15 to 30% of healthy individuals following a tooth-clenching or stress-inducing task. Despite this, no studies have attempted to understand why some healthy individuals develop a headache episode while others do not.

Learn More >

Mirogabalin for the Treatment of Diabetic Peripheral Neuropathic Pain: A Randomized, Double-Blind, Placebo-Controlled Phase 3 Study in Asian Patients.

This study evaluated the efficacy and safety of mirogabalin, a novel, potent, selective ligand of the α δ subunit of voltage-dependent Ca channels, for the treatment of diabetic peripheral neuropathic pain (DPNP).

Learn More >

Severe acute pain and persistent post-surgical pain in orthopaedic trauma patients: a cohort study.

We conducted a cohort study of adult patients presenting for orthopaedic trauma surgery at a statewide trauma centre, with the aims of determining (i) the incidence and risk factors for severe acute pain in the PACU, and (ii) the incidence and risk factors for persistent post-surgical pain at 3 months.

Learn More >

J-2156, a somatostatin receptor type 4 agonist, alleviates mechanical hyperalgesia in a rat model of chronic low back pain.

Chronic low back pain (LBP) ranks among the most common reasons for patient visits to healthcare providers. Drug treatments often provide only partial pain relief and are associated with considerable side-effects. J-2156 [(1'S,2S)-4amino-N-(1'-carbamoyl-2'-phenylethyl)-2-(4"-methyl-1"-naphthalenesulfonylamino)butanamide] is an agonist that binds with nanomolar affinity to the rat and human somatostatin receptor type 4 (SST receptor). Hence, our aim was to assess the efficacy of J-2156 for relief of chronic mechanical LBP in a rat model. Male Sprague Dawley rats were anaesthetised and their lumbar L4/L5 and L5/L6 intervertebral discs (IVDs) were punctured (0.5 mm outer diameter, 2 mm-deep) 10 times per disc. Sham-rats underwent similar surgery, but without disc puncture. For LBP-rats, noxious pressure hyperalgesia developed in the lumbar axial deep tissues from day 7 to day 21 post-surgery, which was maintained until study completion. Importantly, mechanical hyperalgesia did not develop in the lumbar axial deep tissues of sham-rats. In LBP-rats, single intraperitoneal (i.p.) injection of J-2156 (3, 10, 30 mg kg) alleviated primary and secondary hyperalgesia in the lumbar axial deep tissues at L4/L5 and L1, respectively. This was accompanied by a reduction in the otherwise augmented lumbar (L4-L6) dorsal root ganglia expression levels of the pro-nociceptive mediators: phosphorylated p38 (pp38) mitogen-activated protein kinase (MAPK) and phosphorylated p44/p42 MAPK and a reduction in pp38 MAPK in the lumbar enlargement of the spinal cord. The SST receptor is worthy of further investigation as a target for discovery of novel analgesics for the relief of chronic LBP.

Learn More >

Search