I am a
Home I AM A Search Login

Accepted

Share this

Differences in treatment response between migraine with aura and migraine without aura: lessons from clinical practice and RCTs.

Migraine is a major public health problem afflicting approximately 10% of the general population and is a leading cause of disability worldwide, yet our understanding of the basis mechanisms of migraine remains incomplete. About a third of migraine patients have attacks with aura, consisting of transient neurological symptoms that precede or accompany headache, or occur without headache. For patients, aura symptoms are alarming and may be transiently disabling. For clinicians and scientists, aura represents an intriguing neurophysiological event that may provide important insight into basic mechanisms of migraine. Several observations point toward important differences between migraine with and without aura. Compared with migraine without aura, migraine with aura has different heritability, greater association with different conditions including stroke, different alterations of brain structure and function as revealed by imaging studies. A number of studies also indicate that migraine with aura may respond differently to acute and preventive therapies as compared to migraine without aura. The purpose of this review is to provide an overview of these differences in treatment responses, and to discuss the possibility of different therapeutic strategies for migraine with vs. without aura.

Learn More >

Contribution of Corticotropin-Releasing Factor Receptor 1 (CRF1) to Serotonin Receptor 5-HTR Function in Amygdala Neurons in a Neuropathic Pain Model.

The amygdala plays a key role in emotional-affective aspects of pain and in pain modulation. The central nucleus (CeA) serves major amygdala output functions related to emotional-affective behaviors and pain modulation. Our previous studies implicated the corticotropin-releasing factor (CRF) system in amygdala plasticity and pain behaviors in an arthritis model. We also showed that serotonin (5-HT) receptor subtype 5-HTR in the basolateral amygdala (BLA) contributes to increased CeA output and neuropathic pain-like behaviors. Here, we tested the novel hypothesis that 5-HTR in the BLA drives CRF1 receptor activation to increase CeA neuronal activity in neuropathic pain. Extracellular single-unit recordings of CeA neurons in anesthetized adult male rats detected increased activity in neuropathic rats (spinal nerve ligation model) compared to sham controls. Increased CeA activity was blocked by local knockdown or pharmacological blockade of 5-HTR in the BLA, using stereotaxic administration of 5-HTR short hairpin RNA (shRNA) viral vector or a 5-HTR antagonist (SB242084), respectively. Stereotaxic administration of a CRF1 receptor antagonist (NBI27914) into the BLA also decreased CeA activity in neuropathic rats and blocked the facilitatory effects of a 5-HTR agonist (WAY161503) administered stereotaxically into the BLA. Conversely, local (BLA) knockdown of 5-HTR eliminated the inhibitory effect of NBI27914 and the facilitatory effect of WAY161503 in neuropathic rats. The data suggest that 5-HTR activation in the BLA contributes to neuropathic pain-related amygdala (CeA) activity by engaging CRF1 receptor signaling.

Learn More >

The interplay between sleeplessness and high-sensitivity C-reactive protein on risk of chronic musculoskeletal pain. Longitudinal data from the Tromsø Study.

To examine independent associations of sleeplessness and high-sensitivity C-reactive protein (hsCRP) with risk of chronic musculoskeletal pain, and to explore the joint effect of sleeplessness and hsCRP on risk of chronic musculoskeletal pain.

Learn More >

Are perioperative interventions effective in preventing chronic pain after primary total knee replacement? A systematic review.

For many people with advanced osteoarthritis, total knee replacement (TKR) is an effective treatment for relieving pain and improving function. Features of perioperative care may be associated with the adverse event of chronic pain 6 months or longer after surgery; effects may be direct, for example, through nerve damage or surgical complications, or indirect through adverse events. This systematic review aims to evaluate whether non-surgical perioperative interventions prevent long-term pain after TKR.

Learn More >

New diagnostic criteria for headache attributed to transient ischemic attacks.

The International Classification of Headache Disorders diagnostic criteria for Headache Attributed to Transient Ischemic Attack (TIA) and many other secondary headaches are based primarily on the opinion of experts. The aim of this study was to field test, for the first time, the diagnostic criteria for headache attributed to TIA of the International Classification of Headache Disorders, 3rd edition (ICHD-3) and in case of their weaknesses to propose new diagnostic criteria.

Learn More >

Metformin antinociceptive effect in models of nociceptive and neuropathic pain is partially mediated by activation of opioidergic mechanisms.

Metformin, an AMP-activated protein kinase (AMPK) activator, is an oral hypoglycemic drug widely used to treat patients with type 2 diabetes. As AMPK plays a role in the nociceptive processing, investigating the effects induced by metformin in experimental models of pain is warranted. In the present study, we further evaluated the effects induced by metformin in models of nociceptive and neuropathic pain and investigated mechanisms that could mediate such effects. Metformin was administered per os (p.o.) in mice. Nociceptive response induced by heat (hot-plate) and mechanical allodynia induced by chronic constriction injury (CCI) were used as pain models. Naltrexone (intraperitoneal) and glibenclamide (p.o.) were used to investigate mechanisms mediating metformin effects. A single administration of metformin (500 or 1000 mg/kg) inhibited the nociceptive response in the hot-plate model. Single and repeated administration of metformin (250, 500 or 1000 mg/kg) inhibited the mechanical allodynia induced by CCI. Metformin (250, 500 or 1000 mg/kg) did not affect the time mice spent in the rota-rod apparatus. The activity of metformin (1000 mg/kg) in both pain models was attenuated by naltrexone (10 mg/kg), but not by glibenclamide. Concluding, metformin exhibited activity in models of nociceptive and neuropathic pain. In the model of neuropathic pain, preventive and therapeutic effects were observed. Activation of opioidergic pathways partially mediates metformin antinociceptive activity. Altogether, the results indicate that metformin should be further investigated aiming its repositioning in the treatment of patients with different painful conditions.

Learn More >

The therapeutic potential of GABA in neuron-glia interactions of cancer-induced bone pain.

The development of effective therapeutics for cancer-induced bone pain (CIBP) remains a tremendous challenge owing to its unclear mechanisms. Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the central nervous system (CNS). Emerging studies have shown that disinhibition in the spinal cord dorsal horn may account for the development of chronic pain. However, the role of GABA in the development of CIBP remains elusive. In addition, accumulating evidence has shown that neuroglial cells in the peripheral nervous system, especially astrocytes and microglial cells, played an important role in the maintenance of CIBP. In this study, we investigated the expression of GABA and Gamma-aminobutyric acid transporter-1 (GAT-1), a transporter of GABA. Our results demonstrate that GABA was decreased in CIBP rats as expected. However, the expression of glutamic acid decarboxylase (GAD) 65 was up-regulated on day 21 after surgery, while the expression of GAD 67 remained unchanged after surgery. We also found that the expression of GAT-1 was up-regulated mainly in the astrocytes of the spinal cord. Moreover, we evaluated the analgesic effect of exogenous GABA and the GAT-1 inhibitor. Intrathecal administration of exogenous GABA and NO-711 (a GAT-1 selective inhibitor) significantly reversed CIBP-induced mechanical allodynia in a dose-dependent manner. These results firstly show that neuron-glia interactions, especially on the GABAergic pathway, contribute to the development of CIBP. In conclusion, exogenous GABA and GAT-1 inhibitor might be alternative therapeutic strategies for the treatment of CIBP.

Learn More >

Blockade of spinal α-GABA receptors differentially reduces reserpine-induced fibromyalgia-type pain in female rats.

The role of spinal α subunit-containing GABA (α-GABA) receptors in chronic pain is controversial. The purpose of this study was to investigate the participation of spinal α-GABA receptors in the reserpine-induced pain model. Reserpine administration induced tactile allodynia and muscle hyperalgesia in female and male rats. Intrathecal injection of L-655,708 and TB 21007 (7 days after the last reserpine injection) decreased tactile allodynia and, at a lesser extent, muscle hyperalgesia in female rats. The effects of these drugs produced a lower antiallodynic and antihyperalgesic effect in male than in female rats. Contrariwise, these drugs produced tactile allodynia and muscle hyperalgesia in naïve rats and these effects were lower in naïve male than female rats. Intrathecal L-838,417 prevented or reversed L-655,708-induced antiallodynia in reserpine-treated female rats. Repeated treatment with α-GABA receptor small interfering RNA (siRNA), but not scramble, siRNA reduced reserpine-induced allodynia in female rats. Accordingly, α-GABA receptor siRNA induced nociceptive hypersensitivity in naïve female rats. Reserpine enhanced α-GABA receptors expression in spinal cord and DRG, while it increased CD11b (OX-42) and glial fibrillary acidic protein (GFAP) fluorescence intensity in the lumbar spinal cord. In contrast, reserpine diminished K-Cl co-transporter 2 (KCC2) protein in the lumbar spinal cord. Data suggest that spinal α-GABA receptors play a sex-dependent proallodynic effect in reserpine-treated rats. In contrast, these receptors have a sex-dependent antiallodynic role in naïve rats.

Learn More >

A Cold-Sensing Receptor Encoded by a Glutamate Receptor Gene.

In search of the molecular identities of cold-sensing receptors, we carried out an unbiased genetic screen for cold-sensing mutants in C. elegans and isolated a mutant allele of glr-3 gene that encodes a kainate-type glutamate receptor. While glutamate receptors are best known to transmit chemical synaptic signals in the CNS, we show that GLR-3 senses cold in the peripheral sensory neuron ASER to trigger cold-avoidance behavior. GLR-3 transmits cold signals via G protein signaling independently of its glutamate-gated channel function, suggesting GLR-3 as a metabotropic cold receptor. The vertebrate GLR-3 homolog GluK2 from zebrafish, mouse, and human can all function as a cold receptor in heterologous systems. Mouse DRG sensory neurons express GluK2, and GluK2 knockdown in these neurons suppresses their sensitivity to cold but not cool temperatures. Our study identifies an evolutionarily conserved cold receptor, revealing that a central chemical receptor unexpectedly functions as a thermal receptor in the periphery.

Learn More >

A Pungent and Painful Toxin.

In this issue of Cell, King et al. (2019) have discovered a cell penetrating peptide isolated from the venom of the Australian Black Rock scorpion that activates the TRPA1 receptor in a unique way to induce pain. Their findings offer new insights into how animals evolved venoms to target specific ion channel functions.

Learn More >

Search