I am a
Home I AM A Search Login

Accepted

Share this

Association between Itch and Cancer in 3836 Pediatric Pruritus Patients at a Tertiary Care Center.

: Pruritus is a well-recognized paraneoplastic phenomenon. Previous studies have examined the association of itch with a variety of malignancies in adults. However, no large study has examined this association in a pediatric population. : A retrospective study was conducted of patients age 18 or less seen at Johns Hopkins Health System between 2012 and 2019. : A pediatric hospital population of 1,042,976 patients was reviewed. Pruritus was observed in 3836 pediatric patients of whom 130 also had cancer. Pediatric patients with pruritus were significantly more likely to have concomitant malignancy compared to pediatric patients without pruritus (OR 12.84; 95% CI 10.73-15.35, < 0.001). Malignancies most strongly associated with pruritus included neoplasms of the blood (OR 14.38; 95% CI 11.30-18.29, < 0.001), bone (OR 29.02, 95% CI 18.28-46.06, < 0.001) and skin (OR 22.76, 95% CI 9.14-56.72, < 0.001. : Pruritus is significantly associated with malignancy in the pediatric hospital population. Clinicians should also be aware of the high burden of itch in pediatric malignancies and the variation in pruritus across malignancies.

Learn More >

Assessing peripheral fibers, pain sensitivity, central sensitization, and descending inhibition in Native Americans: main findings from the Oklahoma Study of Native American Pain Risk.

Native Americans (NAs) have a higher prevalence of chronic pain than other U.S. racial/ethnic groups, but there have been few attempts to understand the mechanisms of this pain disparity. This study used a comprehensive battery of laboratory tasks to assess peripheral fiber function (cool/warm detection thresholds), pain sensitivity (eg, thresholds/tolerances), central sensitization (eg, temporal summation), and pain inhibition (conditioned pain modulation) in healthy, pain-free adults (N = 155 NAs, N = 150 non-Hispanic Whites [NHWs]). Multiple pain stimulus modalities were used (eg, cold, heat, pressure, ischemic, and electric), and subjective (eg, pain ratings and pain tolerance) and physiological (eg, nociceptive flexion reflex) outcomes were measured. There were no group differences on any measure, except that NAs had lower cold-pressor pain thresholds and tolerances, indicating greater pain sensitivity than NHWs. These findings suggest that there are no group differences between healthy NAs and NHWs on peripheral fiber function, central sensitization, or central pain inhibition, but NAs may have greater sensitivity to cold pain. Future studies are needed to examine potential within-group factors that might contribute to NA pain risk.

Learn More >

Self-motion perception is sensitized in vestibular migraine: pathophysiologic and clinical implications.

Vestibular migraine (VM) is the most common cause of spontaneous vertigo but remains poorly understood. We investigated the hypothesis that central vestibular pathways are sensitized in VM by measuring self-motion perceptual thresholds in patients and control subjects and by characterizing the vestibulo-ocular reflex (VOR) and vestibular and headache symptom severity. VM patients were abnormally sensitive to roll tilt, which co-modulates semicircular canal and otolith organ activity, but not to motions that activate the canals or otolith organs in isolation, implying sensitization of canal-otolith integration. When tilt thresholds were considered together with vestibular symptom severity or VOR dynamics, VM patients segregated into two clusters. Thresholds in one cluster correlated positively with symptoms and with the VOR time constant; thresholds in the second cluster were uniformly low and independent of symptoms and the time constant. The VM threshold abnormality showed a frequency-dependence that paralleled the brain stem velocity storage mechanism. These results support a pathogenic model where vestibular symptoms emanate from the vestibular nuclei, which are sensitized by migraine-related brainstem regions and simultaneously suppressed by inhibitory feedback from the cerebellar nodulus and uvula, the site of canal-otolith integration. This conceptual framework elucidates VM pathophysiology and could potentially facilitate its diagnosis and treatment.

Learn More >

Are there effective interventions for reducing the use of prescribed opioids in adults with chronic non-cancer pain? – A Cochrane Review summary with commentary.

Learn More >

Pain-free resting-state functional brain connectivity predicts individual pain sensitivity.

Learn More >

Promiscuous G-protein coupled receptor inhibition of transient receptor potential melastatin 3 ion channels by Gβγ subunits.

Transient receptor potential melastatin 3 (TRPM3) is a non-selective cation channel that is inhibited by Gβγ subunits liberated following activation of Gα protein-coupled receptors. Here, we demonstrate that TRPM3 channels are also inhibited by Gβγ released from Gα and Gα Activation of the G-coupled adenosine 2B receptor and the G-coupled muscarinic acetylcholine M1 receptor inhibited the activity of heterologously expressed TRPM3 in HEK293 cells. This inhibition was prevented when the Gβγ sink βARK1-ct (C-terminus of β-adrenergic receptor kinase-1) was co-expressed with TRPM3. In neurons isolated from mouse dorsal root ganglia (DRG), native TRPM3 channels were inhibited by activating G-coupled prostaglandin-EP2 and G-coupled bradykinin B2 (BK2) receptors. The G inhibitor pertussis toxin and inhibitors of PKA and PKC had no effect on EP2- and BK2-mediated inhibition of TRPM3, demonstrating that the receptors did not act through Gα, or through the major protein kinases activated downstream of GPCR activation. When DRG neurons were dialysed with GRK2i, which sequesters free Gβγ protein, TRPM3 inhibition by EP2 and BK2 was significantly reduced. Intraplantar injections of EP2 or BK2 agonists inhibited both the nocifensive response evoked by TRPM3 agonists, and the heat-hypersensitivity produced by Freund's Complete Adjuvant (FCA). Furthermore, FCA-induced heat-hypersensitivity was completely reversed by the selective TRPM3 antagonist ononetin in wildtype mice and did not develop in mice. Our results demonstrate that TRPM3 is subject to promiscuous inhibition by Gβγ protein in heterologous expression systems, primary neurons and , and suggest a critical role for this ion channel in inflammatory heat hypersensitivity.The ion channel TRPM3 is widely expressed in the nervous system. Recent studies showed that Gα-coupled GPCRs inhibit TRPM3 through a direct interaction between Gβγ subunits and TRPM3. Since Gβγ proteins can be liberated from other Gα subunits than Gα, we examined whether activation of G- and G-coupled receptors also influence TRPM3 via Gβγ. Our results demonstrate that activation of G- and G-coupled GPCRs in recombinant cells and native sensory neurons inhibits TRPM3 via Gβγ liberation. We also demonstrated that Gs- and G-coupled receptors inhibit TRPM3 , thereby reducing pain produced by activation of TRPM3, and inflammatory heat hypersensitivity. Our results identify Gβγ inhibition of TRPM3 as an effector mechanism shared by the major Gα subunits.

Learn More >

Neonatal injury alters sensory input and synaptic plasticity in GABAergic interneurons of the adult mouse dorsal horn.

Neonatal tissue injury disrupts the balance between primary afferent-evoked excitation and inhibition onto adult spinal projection neurons. However, whether this reflects cell type-specific alterations at synapses onto ascending projection neurons, or rather is indicative of global changes in synaptic signaling across the mature superficial dorsal horn (SDH), remains unknown. Therefore the present study investigated the effects of neonatal surgical injury on primary afferent synaptic input to adult mouse SDH interneurons using in vitro patch clamp techniques. Hindpaw incision at postnatal day (P) 3 significantly diminished total primary afferent-evoked glutamatergic drive to adult Gad67-GFP and non-GFP neurons, and reduced their firing in response to sensory input, in both males and females. Early tissue damage also shaped the relative prevalence of monosynaptic A- vs. C-fiber mediated input to mature GABAergic neurons, with an increased prevalence of Aβ- and Aδ-fiber input observed in neonatally-incised mice compared to naïve littermate controls. Paired presynaptic and postsynaptic stimulation at an interval that exclusively produced spike timing-dependent long-term potentiation (t-LTP) in projection neurons predominantly evoked NMDAR-dependent long-term depression (t-LTD) in naïve Gad67-GFP interneurons. Meanwhile, P3 tissue damage enhanced the likelihood of t-LTP generation at sensory synapses onto the mature GABAergic population, and increased the contribution of Ca-permeable AMPARs to the overall glutamatergic response. Collectively, the results indicate that neonatal injury suppresses sensory drive to multiple subpopulations of interneurons in the adult SDH, which likely represents one mechanism contributing to reduced feedforward inhibition of ascending projection neurons, and the priming of developing pain pathways, following early life trauma.Mounting clinical and preclinical evidence suggests that neonatal tissue damage can result in long-term changes in nociceptive processing within the CNS. While recent work has demonstrated that early life injury weakens the ability of sensory afferents to evoke feedforward inhibition of adult spinal projection neurons, the underlying circuit mechanisms remain poorly understood. Here we demonstrate that neonatal surgical injury leads to persistent deficits in primary afferent drive to both GABAergic and presumed glutamatergic neurons in the mature superficial dorsal horn (SDH), and modifies activity-dependent plasticity at sensory synapses onto the GABAergic population. The functional denervation of spinal interneurons within the mature SDH may contribute to the 'priming' of developing pain pathways following early life injury.

Learn More >

Association of Length of Time Spent in the United States With Opioid Use Among First-Generation Immigrants.

Learn More >

Functional linear modeling of activity data shows analgesic-mediated improved sleep in dogs with spontaneous osteoarthritis pain.

In humans, pain due to osteoarthritis has been demonstrated to be associated with insomnia and sleep disturbances that affect perception of pain, productivity, and quality of life. Dogs, which develop spontaneous osteoarthritis and represent an increasingly used model for human osteoarthritis, would be expected to show similar sleep disturbances. Further, these sleep disturbances should be mitigated by analgesic therapy. Previous efforts to quantify sleep in osteoarthritic dogs using accelerometry have not demonstrated a beneficial effect of analgesic therapy; this is despite owner-reported improvements in dogs' sleep quality. However, analytic techniques for time-series accelerometry data have advanced with the development of functional linear modeling. Our aim was to apply functional linear modeling to accelerometry data from osteoarthritic dogs participating in a cross-over non-steroidal anti-inflammatory (meloxicam) drug trial. Significant differences in activity patterns were seen dogs receiving drug (meloxicam) vs. placebo, suggestive of improved nighttime resting (sleep) and increased daytime activity. These results align with owner-reported outcome assessments of sleep quality and further support dogs as an important translational model with benefits for both veterinary and human health.

Learn More >

The role of sleep quality on the relationship between posttraumatic stress symptoms and pain in women.

Pain frequently co-occurs with elevated posttraumatic stress symptoms (PTSS); women are at elevated risk for their co-occurrence. PTSS and pain are associated with poor sleep quality; yet, little research has examined how sleep impacts their co-occurrence. The current study examines the indirect role of sleep on the relationship between PTSS and pain. A community sample of 182 women completed psychometrically-sound questionnaires assessing PTSS, sleep quality, pain characteristics, depression and anxiety symptoms, and anxiety sensitivity. We examined how sleep quality impacted associations among PTSS and pain intensity and pain interference, while controlling for key psychological factors. Greater PTSS was associated with worse pain interference, and poor sleep quality had a significant indirect effect on this relationship. Sleep may represent a modifiable behavioral mechanism that contributes to the mutual maintenance of PTSS and pain in women. Future research is needed to further clarify the role of sleep quality in their co-occurrence.

Learn More >

Search