I am a
Home I AM A Search Login

Accepted

Share this

Cannabinoids versus placebo or no intervention for pain: protocol for a systematic review with meta-analysis and trial sequential analysis.

Pain is a frequent clinical symptom with significant impact on the patient's well-being. Therefore, adequate pain management is of utmost importance. While cannabinoids have become a more popular alternative to traditional types of pain medication among patients, the quality of evidence supporting the use of cannabinoids has been questioned. The beneficial and harmful effects of cannabinoids in patients with pain is unknown. Accordingly, we aim to assess the efficacy, tolerability and safety of cannabinoids (herbal, plant-derived extracts and synthetic) compared with placebo or no intervention for any type of pain.

Learn More >

The effect of chronic, non-specific low back pain on superficial lumbar muscle activity: a protocol for a systematic review and meta-analysis.

Chronic, non-specific low back pain is a major global cause of disability. One factor which might potentially contribute to ongoing pain is maladaptive variation in the level of activity in the lumbar musculature. Several studies have investigated this activity using surface electromyography, in varied muscles and during a number of functional activities. Due to differences in the applied methodology, the results have been difficult to compare, and previous reviews have been limited in scope. In this protocol, we aim to perform a comprehensive review of the effect of chronic low back pain on lumbar muscle activity.

Learn More >

Discovery of Human Signaling Systems: Pairing Peptides to G Protein-Coupled Receptors.

The peptidergic system is the most abundant network of ligand-receptor-mediated signaling in humans. However, the physiological roles remain elusive for numerous peptides and more than 100 G protein-coupled receptors (GPCRs). Here we report the pairing of cognate peptides and receptors. Integrating comparative genomics across 313 species and bioinformatics on all protein sequences and structures of human class A GPCRs, we identify universal characteristics that uncover additional potential peptidergic signaling systems. Using three orthogonal biochemical assays, we pair 17 proposed endogenous ligands with five orphan GPCRs that are associated with diseases, including genetic, neoplastic, nervous and reproductive system disorders. We also identify additional peptides for nine receptors with recognized ligands and pathophysiological roles. This integrated computational and multifaceted experimental approach expands the peptide-GPCR network and opens the way for studies to elucidate the roles of these signaling systems in human physiology and disease. VIDEO ABSTRACT.

Learn More >

Assessing the affective component of pain, and the efficacy of pain control, using conditioned place aversion in calves.

Pain in animals is typically assessed using reflexive and physiological responses. These measures allow inferences regarding nociception but provide little basis for conclusions about the affective component of pain (i.e. how negatively the experience is perceived). Calves routinely undergo painful procedures on commercial farms, including hot-iron disbudding, providing a convenient model to study pain in animals. The aim of this study was to investigate the affective component of post-procedural pain due to hot-iron disbudding, using conditioned place aversion. Calves ( = 31) were subjected to two procedures (one bud at a time): one without post-procedural pain control and the other with the use of a nonsteroidal anti-inflammatory drug (either meloxicam ( = 16) or ketoprofen ( = 15)). All procedures included the use of local anaesthesia (lidocaine). Place conditioning was tested 2 days after the last treatment by allowing calves to freely roam between the pens where they had previously been disbudded. Calves spent more time, and lay down more frequently, in the pen where they received meloxicam compared with the pen where they only received a local block. Surprisingly, calves avoided the pen where they received ketoprofen compared with the control treatment pen. We hypothesize that the shorter duration of action of ketoprofen resulted in increasing pain at the end of the conditioning period, explaining the increased aversion to this treatment. These results illustrate the value of place conditioning paradigms to assess the affective component of pain in animals, and suggest that the animal's evaluation of painful events depends upon the time course of when the pain is experienced.

Learn More >

Effects of attachment-based compassion therapy (ABCT) on brain-derived neurotrophic factor and low-grade inflammation among fibromyalgia patients: A randomized controlled trial.

Fibromyalgia (FM) is a disabling syndrome characterized by chronic pain associated with fatigue. Its pathogenesis is unknown, but alterations in central sensitization, involving an imbalance of brain-derived neurotrophic factor (BDNF) and inflammatory biomarkers, appear to be implicated. The aim of this study was to evaluate the impact of attachment-based compassion therapy (ABCT) on levels of BDNF, the inflammatory markers TNF-α, IL-6, IL-10, and the C-reactive protein (CRP), analysing whether biomarkers play a mediating/moderating role in improvements in FM functional status. Thirty-four female patients with FM participated in a RCT and were assigned to ABCT or relaxation therapy. Blood extractions were conducted at baseline and post-intervention, with self-report assessments of functional status (FIQ) at baseline, post-intervention and 3-month follow-up. A pro-inflammatory composite was obtained by summing up IL-6, TNF-α and CRP normalized values. Non-parametric tests, analysis of variance and regression models were used to evaluate treatment and mediation/moderation. Compared to relaxation therapy, ABCT showed significant improvements in FIQ and decreases in BDNF, CRP, and pro-inflammatory composite. Changes in BDNF had a mediating role in FIQ. ABCT seems to reduce BDNF and appears to have anti-inflammatory effects in FM patients. Reductions in BDNF could be a mechanism of FM functional status improvement.Clinical Trial Registration: http://ClinicalTrials.gov , identifier NCT02454244. Date: May 27th, 2015.

Learn More >

Home used, patient self-managed, brain-computer interface for the management of central neuropathic pain post spinal cord injury: usability study.

Central Neuropathic Pain (CNP) is a frequent chronic condition in people with spinal cord injury (SCI). Previously, we showed that using laboratory brain-computer interface (BCI) technology for neurofeedback (NFB) training, it was possible to reduce CNP in people with SCI. In this study, we show results of patient self-managed treatment in their homes with a BCI-NFB using a consumer EEG device.

Learn More >

Role of non-macrophage cell-derived HMGB1 in oxaliplatin-induced peripheral neuropathy and its prevention by the thrombin/thrombomodulin system in rodents: negative impact of anticoagulants.

Macrophage-derived high mobility group box 1 (HMGB1), a damage-associated molecular pattern (DAMP) protein, plays a key role in the development of chemotherapy-induced peripheral neuropathy (CIPN) caused by paclitaxel in rodents. Endothelial thrombomodulin (TM) promotes thrombin-induced degradation of HMGB1, and TMα, a recombinant human soluble TM, abolishes peripheral HMGB1-induced allodynia in mice. We thus examined whether HMGB1, particularly derived from macrophages, contributes to oxaliplatin-induced neuropathy in mice and analyzed the anti-neuropathic activity of the TM/thrombin system.

Learn More >

The appropriate dosing of erenumab for migraine prevention after multiple preventive treatment failures: a critical appraisal.

Erenumab, a fully human monoclonal antibody directed against the calcitonin gene-related peptide receptor, was approved for the prevention of episodic (EM) or chronic migraine (CM) at the monthly dose of 70 mg or 140 mg. We reviewed the available literature to understand if patients with prior preventive treatment failures benefit more from the 140 mg dose than the 70 mg.

Learn More >

Virtual Reality as a Therapy Adjunct for Fear of Movement in Veterans With Chronic Pain: Single-Arm Feasibility Study.

Virtual reality (VR) has demonstrated efficacy for distraction from pain-related thoughts and exposure to feared movements. Little empirical VR research has focused on chronic pain management.

Learn More >

Role of macrophages and activated microglia in neuropathic pain associated with chronic progressive spinal cord compression.

Neuropathic pain (NeP) is commonly encountered in patients with diseases associated with spinal cord damage (e.g., spinal cord injury (SCI) and compressive myelopathy). Recent studies described persistent glial activation and neuronal hyperactivity in SCI, but the pathomechanisms of NeP in chronic compression of the spinal cord remains elusive. The purpose of the present study was to determine the roles of microglia and infiltrating macrophages in NeP. The study was conducted in chimeric spinal hyperostotic mice (ttw/ttw), characterized by chronic progressive compression of the spinal cord as a suitable model of human compressive myelopathy. The severity of spinal cord compression correlated with proportion of activated microglia and hematogenous macrophages. Spinal cord compression was associated with overexpression of mitogen-activated protein kinases (MAPKs) in infiltrating macrophages and reversible blood-spinal cord barrier (BSCB) disruption in the dorsal horns. Our results suggested that chronic neuropathic pain in long-term spinal cord compression correlates with infiltrating macrophages, activated microglial cells and the associated damage of BSCB, together with overexpression of p-38 MAPK and p-ERK1/2 in these cells. Our findings are potentially useful for the design of new therapies to alleviate chronic neuropathic pain associated with compressive myelopathy.

Learn More >

Search