I am a
Home I AM A Search Login

Accepted

Share this

Outcome measures for assessing the effectiveness of non-pharmacological interventions in frequent episodic or chronic migraine: a Delphi study.

The aim of this Delphi survey was to establish an international consensus on the most useful outcome measures for research on the effectiveness of non-pharmacological interventions for migraine. This is important, since guidelines for pharmacological trials recommend measuring the frequency of headaches with 50% reduction considered a clinically meaningful effect. It is unclear whether the same recommendations apply to complementary (or adjunct) non-pharmacological approaches, whether the same cut-off levels need to be considered for effectiveness when used as an adjunct or stand-alone intervention, and what is meaningful to patients.

Learn More >

Molecular Insight into Recognition of the CGRPR Complex by Migraine Prevention Therapy Aimovig (Erenumab).

Calcitonin-gene-related peptide (CGRP) plays a key role in migraine pathophysiology. Aimovig (erenumab; erenumab-aooe in the United States) is the only US Food and Drug Administration (FDA)-approved monoclonal antibody (mAb) therapy against the CGRP receptor (CGRPR) for the prevention of migraine. Aimovig is also the first FDA-approved mAb against a G-protein-coupled receptor (GPCR). Here, we report the architecture and functional attributes of erenumab critical for its potent antagonism against CGRPR. The crystal structure of erenumab in complex with CGRPR reveals a direct ligand-blocking mechanism, enabled by a remarkable 21-residue-long complementary determining region (CDR)-H3 loop, which adopts a tyrosine-rich helix-turn tip and projects into the deep interface of the calcitonin receptor-like receptor (CLR) and RAMP1 subunits of CGRPR. Furthermore, erenumab engages with residues specific to CLR and RAMP1, providing the molecular basis for its exquisite selectivity. Such structural insights reveal the drug action mechanism of erenumab and shed light on developing antibody therapeutics targeting GPCRs.

Learn More >

Cryo-EM structures of PAC1 receptor reveal ligand binding mechanism.

The pituitary adenylate cyclase-activating polypeptide type I receptor (PAC1R) belongs to the secretin receptor family and is widely distributed in the central neural system and peripheral organs. Abnormal activation of the receptor mediates trigeminovascular activation and sensitization, which is highly related to migraine, making PAC1R a potential therapeutic target. Elucidation of PAC1R activation mechanism would benefit discovery of therapeutic drugs for neuronal disorders. PAC1R activity is governed by pituitary adenylate cyclase-activating polypeptide (PACAP), known as a major vasodilator neuropeptide, and maxadilan, a native peptide from the sand fly, which is also capable of activating the receptor with similar potency. These peptide ligands have divergent sequences yet initiate convergent PAC1R activity. It is of interest to understand the mechanism of PAC1R ligand recognition and receptor activity regulation through structural biology. Here we report two near-atomic resolution cryo-EM structures of PAC1R activated by PACAP38 or maxadilan, providing structural insights into two distinct ligand binding modes. The structures illustrate flexibility of the extracellular domain (ECD) for ligands with distinct conformations, where ECD accommodates ligands in different orientations while extracellular loop 1 (ECL1) protrudes to further anchor the ligand bound in the orthosteric site. By structure-guided molecular modeling and mutagenesis, we tested residues in the ligand-binding pockets and identified clusters of residues that are critical for receptor activity. The structures reported here for the first time elucidate the mechanism of specificity and flexibility of ligand recognition and binding for PAC1R, and provide insights toward the design of therapeutic molecules targeting PAC1R.

Learn More >

Complementary roles of murine Na1.7, Na1.8 and Na1.9 in acute itch signalling.

Acute pruritus occurs in various disorders. Despite severe repercussions on quality of life treatment options remain limited. Voltage-gated sodium channels (Na) are indispensable for transformation and propagation of sensory signals implicating them as drug targets. Here, Na1.7, 1.8 and 1.9 were compared for their contribution to itch by analysing Na-specific knockout mice. Acute pruritus was induced by a comprehensive panel of pruritogens (C48/80, endothelin, 5-HT, chloroquine, histamine, lysophosphatidic acid, trypsin, SLIGRL, β-alanine, BAM8-22), and scratching was assessed using a magnet-based recording technology. We report an unexpected stimulus-dependent diversity in Na channel-mediated itch signalling. Na1.7 showed substantial scratch reduction mainly towards strong pruritogens. Na1.8 impaired histamine and 5-HT-induced scratching while Na1.9 was involved in itch signalling towards 5-HT, C48/80 and SLIGRL. Furthermore, similar microfluorimetric calcium responses of sensory neurons and expression of itch-related TRP channels suggest no change in sensory transduction but in action potential transformation and conduction. The cumulative sum of scratching over all pruritogens confirmed a leading role of Na1.7 and indicated an overall contribution of Na1.9. Beside the proposed general role of Na1.7 and 1.9 in itch signalling, scrutiny of time courses suggested Na1.8 to sustain prolonged itching. Therefore, Na1.7 and 1.9 may represent targets in pruritus therapy.

Learn More >

Stratified primary care versus non-stratified care for musculoskeletal pain: qualitative findings from the STarT MSK feasibility and pilot cluster randomized controlled trial.

Stratified care involves subgrouping patients based on key characteristics, e.g. prognostic risk, and matching these subgroups to appropriate early treatment options. The STarT MSK feasibility and pilot cluster randomised controlled trial (RCT) examined the feasibility of a future main trial and of delivering prognostic stratified primary care for patients with musculoskeletal pain. The pilot RCT was conducted in 8 UK general practices (4 stratified care; 4 usual care) with 524 patients. GPs in stratified care practices were asked to use i) the Keele STarT MSK development tool for risk-stratification and ii) matched treatment options for patients at low-, medium- and high-risk of persistent pain. This paper reports on a nested qualitative study exploring the feasibility of delivering stratified care ahead of the main trial.

Learn More >

Stratified primary care versus non-stratified care for musculoskeletal pain: findings from the STarT MSK feasibility and pilot cluster randomized controlled trial.

Musculoskeletal (MSK) pain from the five most common presentations to primary care (back, neck, shoulder, knee or multi-site pain), where the majority of patients are managed, is a costly global health challenge. At present, first-line decision-making is based on clinical reasoning and stratified models of care have only been tested in patients with low back pain. We therefore, examined the feasibility of; a) a future definitive cluster randomised controlled trial (RCT), and b) General Practitioners (GPs) providing stratified care at the point-of-consultation for these five most common MSK pain presentations.

Learn More >

Changes in the transcriptional fingerprint of satellite glial cells following peripheral nerve injury.

Satellite glial cells (SGCs) are homeostatic cells enveloping the somata of peripheral sensory and autonomic neurons. A wide variety of neuronal stressors trigger activation of SGCs, contributing to, for example, neuropathic pain through modulation of neuronal activity. However, compared to neurons and other glial cells of the nervous system, SGCs have received modest scientific attention and very little is known about SGC biology, possibly due to the experimental challenges associated with studying them in vivo and in vitro. Utilizing a recently developed method to obtain SGC RNA from dorsal root ganglia (DRG), we took a systematic approach to characterize the SGC transcriptional fingerprint by using next-generation sequencing and, for the first time, obtain an overview of the SGC injury response. Our RNA sequencing data are easily accessible in supporting information in Excel format. They reveal that SGCs are enriched in genes related to the immune system and cell-to-cell communication. Analysis of SGC transcriptional changes in a nerve injury-paradigm reveal a differential response at 3 days versus 14 days postinjury, suggesting dynamic modulation of SGC function over time. Significant downregulation of several genes linked to cholesterol synthesis was observed at both time points. In contrast, regulation of gene clusters linked to the immune system (MHC protein complex and leukocyte migration) was mainly observed after 14 days. Finally, we demonstrate that, after nerve injury, macrophages are in closer physical proximity to both small and large DRG neurons, and that previously reported injury-induced proliferation of SGCs may, in fact, be proliferating macrophages.

Learn More >

Group Differences Between Countries and Between Languages in Pain-Related Beliefs, Coping, and Catastrophizing in Chronic Pain: A Systematic Review.

To evaluate the extent to which pain-related beliefs, appraisals, coping, and catastrophizing differ between countries, language groups, and country economy.

Learn More >

Migraine and Sleep in Children: A Bidirectional Relationship.

Migraine and sleep disorders in children exhibit a bidirectional relationship. This relationship is based on shared pathophysiology. Migraine involves activation of the trigeminal vascular system. Nociceptive neurons that innervate the dura release various vasoactive peptides. Calcitonin gene-related peptide is the most active of these peptides. Neural pathways that are involved in sleep generation are divided into those responsible for circadian rhythm, wake promotion, non-rapid eye movement, and rapid eye movement sleep activation. Sleep state switches are a critical component of these systems. The cerebral structures, networks, and neurochemical systems that are involved in migraine align closely with those responsible for the regulation of sleep. Neurochemical systems that are involved with both the pathogenesis of migraine and regulation of sleep include adenosine, melatonin, orexin, and calcitonin gene-related peptide. Sleep disorders represent the most common comorbidity with migraine in childhood. The prevalence of parasomnias, obstructive sleep apnea, and sleep-related movement disorders is significantly greater in children migraineurs. Infantile colic is a precursor of childhood migraine. Treatment of comorbid sleep disorders is important for the appropriate management of children with migraine. Sleep-based behavioral interventions can be of substantial benefit. These interventions are particularly important in children due to limited evidence for effective migraine pharmacotherapy.

Learn More >

Viral Vector-Mediated Gene Transfer of Glutamic Acid Decarboxylase for Chronic Pain Treatment: A Literature Review.

Chronic pain is long-lasting nociceptive state, impairing the patient's quality of life. Existing analgesics are generally not effective in the treatment of chronic pain, some of which such as opioids have the risk of tolerance/dependence, overdose death with higher daily opioid doses for increasing analgesic effect. Opioid use disorders have already reached an epidemic level in the United States, therefore, non-opioid analgesic approach and/or use of non-pharmacologic interventions will be employed with increasing frequency. Viral vector mediated gene therapy is promising in clinical trials in the nervous system diseases. Glutamic acid decarboxylase (GAD) enzyme, a key enzyme in biosynthesis of GABA, plays an important role in analgesic mechanism. In the literature review, we used PubMed and BioRxiv to search the studies, and the eligible criteria include (1) manuscript written in English, (2) use of viral vectors expressing GAD67 or GAD65, and (3) preclinical pain models. We identified 13 eligible original research papers, in which the pain models include nerve injury, HIV-related pain, painful diabetic neuropathy, and formalin test. GAD expressed by the viral vectors from all of the reports produced antinociceptive effects. Restoring GABA systems is a promising therapeutic strategy for chronic pain, which provides evidence for the clinical trial of gene therapy for pain in the near future.

Learn More >

Search