I am a
Home I AM A Search Login

Accepted

Share this

Prostaglandin E2, Produced by Mast Cells in Colon Tissues from Patients with Irritable Bowel Syndrome, Contributes to Visceral Hypersensitivity in Mice.

Visceral hypersensitivity is common in patients with irritable bowel syndrome (IBS). We investigated whether inflammatory molecules, such as histamine and proteases, activate prostaglandin-endoperoxide synthase 2 (PTGS2, also called COX2) to increase the synthesis of prostaglandin E2 (PGE2) by mast cells, which activates the receptor PTGER2 (also called EP2) in the dorsal root ganglia to promote visceral hypersensitivity.

Learn More >

Experiences of people taking opioid medication for chronic non-malignant pain: a qualitative evidence synthesis using meta-ethnography.

To review qualitative studies on the experience of taking opioid medication for chronic non-malignant pain (CNMP) or coming off them.

Learn More >

Improving characterization and diagnosis quality of Myofascial Pain Syndrome: a systematic review of the clinical and biomarker overlap with Delayed Onset Muscle Soreness.

Myofascial Pain Syndrome (MPS) is one of the most common conditions of chronic musculoskeletal pain, yet its mechanisms are still poorly understood. Delayed Onset Muscle Soreness (DOMS) is also a regional pain syndrome that has clinical similarities to MPS, but has been better investigated. Emerging research suggests that DOMS may be a valid experimental model for studying MPS; however, a comparison of the similarities and differences of these two conditions has previously not been performed. Herein, we aimed to identify the similarities and differences in the clinical features and biomarkers between DOMS and MPS in order to better define MPS and identify future areas of (DOMS-informed) MPS research.

Learn More >

Fluorescent Analogues of Human α-Calcitonin Gene-Related Peptide with Potent Vasodilator Activity.

Human α-calcitonin gene-related peptide (h-α-CGRP) is a highly potent vasodilator peptide that belongs to the family of calcitonin peptides. There are two forms of CGRP receptors in humans and rodents: α-CGRP receptor predominately found in the cardiovascular system and β-CGRP receptor predominating in the gastrointestinal tract. The CGRP receptors are primarily localized to C and Aδ sensory fibers, where they are involved in nociceptive transmission and migraine pathophysiology. These fibers are found both peripherally and centrally, with extensive perivascular location. The CGRP receptors belong to the class B G-protein-coupled receptors, and they are primarily associated to signaling via Gα proteins. The objectives of the present work were: (i) synthesis of three single-labelled fluorescent analogues of h-α-CGRP by 9-fluorenylmethyloxycarbonyl (Fmoc)-based solid-phase peptide synthesis, and (ii) testing of their biological activity in isolated human, mouse, and rat arteries by using a small-vessel myograph setup. The three analogues were labelled with 5(6)-carboxyfluorescein via the spacer 6-aminohexanoic acid at the chain of Lys or Lys. Circular dichroism (CD) experiments were performed to obtain information on the secondary structure of these fluorescently labelled peptides. The CD spectra indicated that the folding of all three analogues was similar to that of native α-CGRP. The three fluorescent analogues of α-CGRP were successfully prepared with a purity of >95%. In comparison to α-CGRP, the three analogues exhibited similar efficacy, but different potency in producing a vasodilator effect. The analogue labelled at the N-terminus proved to be the most readily synthesized, but it was found to possess the lowest vasodilator potency. The analogues labelled at Lys or Lys exhibited an acceptable reduction in potency (i.e., 3-5 times and 5-10 times less potent, respectively), and thus they have potential for use in further investigations of receptor internalization and neuronal reuptake.

Learn More >

Risk of opioid misuse in people with cancer and pain and related clinical considerations: a qualitative study of the perspectives of Australian general practitioners.

To explore the perspectives of general practitioners (GPs) concerning the risk of opioid misuse in people with cancer and pain and related clinical considerations.

Learn More >

Clinical indicators to identify neuropathic pain in low back-related leg pain: protocol for a modified Delphi study.

Neuropathic low back-related leg pain (LBLP) can be a challenge to healthcare providers to diagnose and treat. Accurate diagnosis of neuropathic pain is fundamental to ensure appropriate intervention is given. However, to date there is no gold standard to diagnose neuropathic LBLP. A Delphi study will therefore be conducted to obtain an expert-derived consensus list of clinical indicators to identify a neuropathic component to LBLP.

Learn More >

Evoked and spontaneous pain assessment during tooth pulp injury.

Injury of the tooth pulp is excruciatingly painful and yet the receptors and neural circuit mechanisms that transmit this form of pain remain poorly defined in both the clinic and preclinical rodent models. Easily quantifiable behavioral assessment in the mouse orofacial area remains a major bottleneck in uncovering molecular mechanisms that govern inflammatory pain in the tooth. In this study we sought to address this problem using the Mouse Grimace Scale and a novel approach to the application of mechanical Von Frey hair stimuli. We use a dental pulp injury model that exposes the pulp to the outside environment, a procedure we have previously shown produces inflammation. Using RNAscope technology, we demonstrate an upregulation of genes that contribute to the pain state in the trigeminal ganglia of injured mice. We found that mice with dental pulp injury have greater Mouse Grimace Scores than sham within 24 hours of injury, suggestive of spontaneous pain. We developed a scoring system of mouse refusal to determine thresholds for mechanical stimulation of the face with Von Frey filaments. This method revealed that mice with a unilateral dental injury develop bilateral mechanical allodynia that is delayed relative to the onset of spontaneous pain. This work demonstrates that tooth pain can be quantified in freely behaving mice using approaches common for other types of pain assessment. Harnessing these assays in the orofacial area during gene manipulation should assist in uncovering mechanisms for tooth pulp inflammatory pain and other forms of trigeminal pain.

Learn More >

Altered lateral geniculate nucleus functional connectivity in migraine without aura: a resting-state functional MRI study.

To investigate the structural and functional connectivity changes of lateral geniculate nucleus (LGN) and their relationships with clinical characteristics in patients without aura.

Learn More >

lncRNA MALAT1 contributes to neuropathic pain development through regulating miR-129-5p/HMGB1 axis in a rat model of chronic constriction injury.

Mounting studies pay attention to the functional roles of long non-coding RNAs (lncRNAs) in many human diseases including neuropathic pain. LncRNA MALAT1 has been indicated to serve as a critical mediator in neuropathic pain with unclear mechanisms. The present study aims to explore the functional roles of MALAT1 in neuropathic pain progression and the related mechanisms. Bilateral sciatic nerves were ligated to induce chronic constriction injury (CCI) in order to establish the neuropathic pain rat model followed by behavioral tests, RT-qPCR, Western blotting, and ELISA. Dual luciferase activity assay was performed to determine the binding effect between MALAT1 or HMGB1 and miR-129-5p. The mRNA levels of MALAT1 were significantly enhanced in CCI rats. MALAT1 inhibition repressed the development of neuropathic pain and neuroinflammation. Additionally, miR-129-5p was decreased and HMGB1 was increased, both of which could be rectified by MALAT1 inhibition. Meanwhile, MALAT1 targeted miR-129-5p/HMGB1 axis. Finally, miR-129-5p suppression attenuated the inhibitory effect of MALAT1 inhibition on neuropathic pain and neuroinflammation development in CCI rats. The present study demonstrates that MALAT1 might modulate neuropathic pain via targeting miR-129-5p/HMGB1 axis. These findings may lead to a promising and efficacious clinical approach for the treatment of neuropathic pain.

Learn More >

Neuromelanin Locus Coeruleus MRI Contrast in Migraine With Aura.

The locus coeruleus (LC) is one of the brainstem nuclei that may be activated during migraine attack. As LC contains neuromelanin, a by-product of norepinephrine synthesis, it can be delineated in vivo using neuromelanin sensitive magnetic resonance imaging (MRI). The neuromelanin content in LC has been suggested to reflect previous LC activation. We investigated LC MRI contrast in patients with migraine with aura (MWA) and its correlation with migraine features.

Learn More >

Search