I am a
Home I AM A Search Login

Accepted

Share this

Enteric nervous system: sensory transduction, neural circuits and gastrointestinal motility.

The gastrointestinal tract is the only internal organ to have evolved with its own independent nervous system, known as the enteric nervous system (ENS). This Review provides an update on advances that have been made in our understanding of how neurons within the ENS coordinate sensory and motor functions. Understanding this function is critical for determining how deficits in neurogenic motor patterns arise. Knowledge of how distension or chemical stimulation of the bowel evokes sensory responses in the ENS and central nervous system have progressed, including critical elements that underlie the mechanotransduction of distension-evoked colonic peristalsis. Contrary to original thought, evidence suggests that mucosal serotonin is not required for peristalsis or colonic migrating motor complexes, although it can modulate their characteristics. Chemosensory stimuli applied to the lumen can release substances from enteroendocrine cells, which could subsequently modulate ENS activity. Advances have been made in optogenetic technologies, such that specific neurochemical classes of enteric neurons can be stimulated. A major focus of this Review will be the latest advances in our understanding of how intrinsic sensory neurons in the ENS detect and respond to sensory stimuli and how these mechanisms differ from extrinsic sensory nerve endings in the gut that underlie the gut-brain axis.

Learn More >

Robust induction of neural crest cells to derive peripheral sensory neurons from human induced pluripotent stem cells.

Because intractable itch reduces quality of life, understanding the fundamental mechanisms of itch is required to develop antipruritic treatments. Itch is mediated by peripheral sensory neurons, which originate from the neural crest (NC) during development. Itch-associated signaling molecules have been detected in genetically engineered animals and in cultures of peripheral neurons from dorsal root ganglia (DRG). Ethical difficulties collecting peripheral neurons from human DRG have limited analysis of itch in humans. This study describes a method of differentiating peripheral neurons from human induced pluripotent stem cells (hiPSCs) for physiological study of itch. This method resulted in the robust induction of p75 and HNK1 double-positive NC cells from hiPSCs. The expression of NC markers TFAP2A, SOX10 and SNAI1 increased during NC induction. The induction efficiency was nearly 90%, and human peripheral neurons expressing peripherin were efficiently differentiated from hiPSC-derived NC cells. Moreover, induced peripheral neurons expressed the sensory neuronal marker BRN3A and the itch-related receptors HRH1, MRGPRX1, IL31R and IL-4R. Calcium imaging analyses indicated that these peripheral neurons included sensory neurons responsive to itch-related stimuli such as histamine, BAM8-22, IL-31 and IL-4. These findings may enable detailed analyses of human DRG neurons and may result in new therapies for intractable itch.

Learn More >

Functional abdominal pain: what clinicians need to know.

Abdominal pain in childhood is extremely common and presents frequently to both primary and secondary care, with many children having recurrent pain which impacts on daily functioning. Despite this most children have no discernible underlying pathology. We discuss the underlying mechanism for functional abdominal pain (visceral hypersensitivity), the evidence base linking parental anxiety and patient symptoms, and how parents can be supported in managing their children's symptoms by addressing questions commonly asked by children and families. We look at the evidence for a one-stop rational approach to investigation including a coeliac screen, inflammatory markers and consideration of stool faecal calprotectin, in the absence of red flags. We evaluate commonly used treatments for functional abdominal pain, within a context of managing family expectations. Given the limitations in pharmacological treatment options, trials of probiotics, peppermint oil, mebeverine and (for short-term use only) hyoscine butylbromide may be appropriate. Psychological interventions including cognitive-behavioural therapy, distraction techniques and hypnotherapy have a better evidence base. There is also some evidence for other complementary therapies in children, including yoga and neurostimulation. Outcome is generally good providing there is child and family acceptance of the multiple factors implicated in the aetiology of the pain.

Learn More >

Dysmenorrhea subtypes exhibit differential quantitative sensory assessment profiles.

Women who develop bladder pain syndrome (BPS), irritable bowel syndrome, or dyspareunia frequently have an antecedent history of dysmenorrhea. Despite the high prevalence of menstrual pain, its role in chronic pelvic pain emergence remains understudied. We systematically characterized bladder, body, and vaginal mechanical sensitivity with quantitative sensory testing in women with dysmenorrhea (DYS, n = 147), healthy controls (HCs) (n = 37), and women with BPS (n = 25). Previously, we have shown that a noninvasive, bladder-filling task identified a subset of women with both dysmenorrhea and silent bladder pain hypersensitivity, and we repeated this to subtype dysmenorrhea sufferers in this study (DYSB; n = 49). DYS, DYSB, and BPS participants had lower vaginal mechanical thresholds and reported more pain to a cold stimulus during a conditioned pain modulation task and greater pelvic examination after-pain than HCs (P's < 0.05). DYSB participants also had reduced body mechanical thresholds and less conditioned pain modulation compared to HCs and DYS participants (P's < 0.05). Comparing quantitative sensory testing results among the DYS and HC groups only, provoked bladder pain was the only significant predictor of self-reported menstrual pain (r = 0.26), bladder pain (r = 0.57), dyspareunia (r = 0.39), and bowel pain (r = 0.45). Our findings of widespread sensory sensitivity in women with dysmenorrhea and provoked bladder pain, much like that observed in chronic pain, suggest a need to study the trajectory of altered mechanisms of pain processing in preclinical silent visceral pain phenotypes to understand which features convey inexorable vs modifiable risk.

Learn More >

Central Sensitisation and functioning in patients with chronic low back pain: protocol for a cross-sectional and cohort study.

A relevant subsample of patients with chronic low back pain (CLBP) have manifested augmented central pain processing, central sensitisation (CS). Patients with CLBP have limited functioning and participation. Theoretically, physical functioning in patients with CLBP can plausibly be linked to CS; however, evidence to explain such association is scarce. Moreover, there is no gold standard for CS diagnosis. The objectives of the study are: (1) to analyse the association between instruments assessing reference symptoms and signs attributed to CS; (2) to analyse whether reference symptoms and signs attributed to CS are associated with functioning measurement outcomes; and (3) to analyse whether changes (between baseline and discharge) in reference symptoms and signs attributed to CS are related to changes in each of the functioning measurement outcomes.

Learn More >

IL-35 promotes microglial M2 polarization in a rat model of diabetic neuropathic pain.

Switching microglial polarization from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype represents a novel therapeutic strategy for diabetic neuropathic pain (DNP). This study aims to determine the role and mechanism of interleukin (IL)-35 in regulating microglial M1/M2 polarization in DNP. A rat model of DNP was induced by a single streptozocin injection and recombinant IL-35 (rIL-35) was then intrathecally administered to the rats for 14 days. The mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) were measured to assess the therapeutic effect of IL-35. Highly aggressive proliferating immortalized (HAPI), a rat microglia cell line, was treated with lipopolysaccharide (LPS) for M1 polarization or IL-4 for M2 polarization. The M1 markers (CD68, iNOS, TNF-α, IL-6) and M2 markers (CD206, Arg-1, IL-10) were examined. rIL-35 administration in DNP model rats elevated MWT and TWL, induced microglial polarization toward the M2 phenotype, suppressed JNK signaling and activated JAK2/STAT6 signaling. In vitro assay confirmed that rIL-35 induced microglial M2 polarization in HAPI cells through inhibiting JNK signaling and activating JAK2/STAT6 signaling. Collectively, the mechanism underlying therapeutic effect of IL-35 on DNP may relate to its promotion of microglial M2 polarization by regulating JNK signaling and JAK2/STAT6 signaling.

Learn More >

Commentary on Ma et al. Resveratrol brings back happy bug’s harmony.

Learn More >

Concurrent validity of electronic von Frey as an assessment tool for burn associated pain.

An important challenge in pain assessment is the inability of an evaluator to corroborate, using objective signs or indicators, the subjective pain report of a patient. In this scenario, the Electronic von Frey (EVF) anaesthesiometer rises as a valuable Quantitative Sensory Testing modality for pain evaluation. Although EVF showed good reproducibility when applied to healthy areas in humans, its use for evaluation of burn-related pain threshold has not yet been validated. The present study demonstrated the concurrent validity of EVF by determining its correlation with the traditionally used Visual Analog Scale (VAS). EVF was compared to VAS through pain measurements obtained from 44 patients with superficial partial thickness burns treated with silver sulfadiazine. A very good and significant positive correlation between both methods was detected. Baseline clinical and demographic parameters did not significantly affect the association between EVF and VAS. Additionally, EVF had significant and moderate positive correlation with the amount of analgesic used and with the Burns Specific Pain Anxiety Scale scores. Regular pain assessment is essential for the establishment of an appropriate treatment plan; thus, it is critical that we continue to refine our pain assessment skills to avoid chronic pain and psychological trauma in burn patients.

Learn More >

Reactive oxygen species play a role in P2X7 receptor-mediated IL-6 production in spinal astrocytes.

Astrocytes mediate a remarkable variety of cellular functions, including gliotransmitter release. Under pathological conditions, high concentrations of the purinergic receptor agonist adenosine triphosphate (ATP) are released into the extracellular space leading to the activation of the purinergic P2X7 receptor, which in turn can initiate signaling cascades. It is well-established that reactive oxygen species (ROS) increase in macrophages and microglia following P2X7 receptor activation. However, direct evidence that activation of P2X7 receptor leads to ROS production in astrocytes is lacking to date. While it is known that P2X7R activation induces cytokine production, the mechanism involved in this process is unclear. In the present study, we demonstrated that P2X7 receptor activation induced ROS production in spinal astrocytes in a concentration-dependent manner. We also found that P2X7R-mediated ROS production is at least partially through NADPH oxidase. In addition, our ELISA data show that P2X7R-induced IL-6 release was dependent on NADPH oxidase-mediated production of ROS. Collectively, these results reveal that activation of the P2X7 receptor on spinal astrocytes increases ROS production through NADPH oxidase, subsequently leading to IL-6 release. Our results reveal a role of ROS in the P2X7 signaling pathway in mouse spinal cord astrocytes and may indicate a potential mechanism for the astrocytic P2X7 receptor in chronic pain.

Learn More >

Botulinum neurotoxin injections for muscle-based (dystonia and spasticity) and non-muscle-based (neuropathic pain) pain disorders: a meta-analytic study.

Apart from the known efficacy of Botulinum Neurotoxin Type A (BoNT/A) in hyperactive striated and smooth muscles, different pain states have become potential targets of toxin effects. This present study determined the comparative toxin effectiveness in pain reduction among those patients injected with BoNT/A in muscle-based and in non-muscle-based conditions. Randomized controlled trials (RCTs) on the effect of BoNT/A on selected pain conditions were included. The conditions were spasticity and dystonia for muscle-based pain. For non-muscle-based pain, conditions included were painful diabetic neuropathy (PDN), post-herpetic neuralgia (PHN), trigeminal neuralgia (TN), complex regional pain syndrome (CRPS), and spinal cord injury (SCI). In view of possibly differing pathophysiology, myofascial pain, temporomandibular joint (TMJ), other joint or tendon pains, cervicogenic and lumbar pains, migraine and visceral pain syndromes were excluded. Standardized mean difference was used as the effect measure and computed with STATA. 25 RCTs were analyzed. Pooled estimates showed significantly lower pain score in the Treatment group (z = 5.23, p < 0.01, 95% CI = - 0.75, - 0.34). Subgroup analyses showed that BoNT/A significantly reduced both muscle-based (z = 3.78, p < 0.01, 95% CI = - 0.72, - 0.23) and non-muscle-based (z = 3.37, p = 0.001, 95% CI = - 1.00, - 0.27) pain. Meta-regression using four covariates namely dosage, route, frequency and duration was done which revealed that dosage significantly affects standardized mean differences, while the other three covariates were insignificant. The joint F-test was found to be insignificant (p value = 0.1182). The application of the model with these covariates does not significantly explain the derived heterogeneity of standardized mean differences. In conclusion, BoNT/A can be effectively used in muscle-based and non-muscle-based pain disorders. We detected no difference between the presence and magnitude of pain relief favoring muscle-based compared to non-muscle-based pain. Thus, we cannot say whether or not there might be independent mechanisms of toxin-induced pain relief for pain generated from either muscle or nerve hyperactivity.

Learn More >

Search