I am a
Home I AM A Search Login

Accepted

Share this

Headache attributed to craniocervical dystonia: a prospective cohort study.

Cervical dystonia is the most common form of focal idiopathic dystonia and is frequently associated with pain. Headaches are not considered to be more prevalent amongst patients presenting with cervical dystonia, and headaches attributed to craniocervical dystonia are considered to be a rare disorder, despite the lack of studies and clinical information regarding the subject.

Learn More >

Evaluation of the concomitant use of oral preventive treatments and OnabotulinumtoxinA in chronic migraine: the PREVENBOX study.

OnabotulinumtoxinA is an effective preventive treatment for chronic migraine. In chronic migraine, besides a reduction in headache frequency, a decreased reliance on oral prophylactics is also indicative of treatment effectiveness. This study aimed to quantify the change in the use of oral prophylactics after treatment with onabotulinumtoxinA in patients with chronic migraine.

Learn More >

Ethnic Differences in Experimental Pain Responses Following a Paired Verbal Suggestion With Saline Infusion: A Quasiexperimental Study.

Ethnic differences in placebo and nocebo responses are an important, yet underresearched, patient factor that might contribute to treatment disparities.

Learn More >

A hidden mesencephalic variant of central pain.

Central post-stroke pain (CPSP) can arise after lesions anywhere in the central somatosensory pathways, essentially within the spinothalamic system (STS). Although the STS can be selectively injured in the mesencephalon, CPSP has not been described in pure midbrain infarcts.

Learn More >

Matrix Metalloproteinase-Responsive PEGylated Lipid Nanoparticles for Controlled Drug Delivery in the Treatment of Rheumatoid Arthritis.

Rheumatoid arthritis (RA) is an autoimmune disorder. It causes inflammation, swelling, and pain in the joints of the human body. Overexpressed matrix metalloproteinases (MMPs) at the inflammatory sites of RA are a target in the construction of inflammation-responsive drug delivery vehicles for enhancing the therapeutic effect of anti-inflammatory drugs in the treatment of RA. In this paper, we report MMP-responsive PEGylated lipid nanoparticles through the co-assembly of triglycerol monostearate (TGMS) and 1,2-distearoyl–glycero-3-phospho-ethanolamine-poly(ethyleneglycol) (DSPE-PEG) in which the ester bond of TGMS is cleavable by MMPs and the PEG chain provides a stealth layer. The lipid nanoparticles show high biocompatibility, extended blood circulation, and preferential distribution in the inflammatory joints of RA. The loaded dexamethasone (Dex) can be rapidly released from the lipid nanoparticles in response to MMPs. After being intravenously administered to arthritic rats, Dex-loaded MMP-responsive PEGylated lipid nanoparticles significantly reduce the degree of joint swelling and inhibit the production of TNF-α and IL-1β in joint tissues. These results demonstrate that MMP-responsive PEGylated lipid nanoparticles are a smart drug vehicle for the treatment of RA with improved therapeutic efficacy.

Learn More >

C-Fiber Loss as a Possible Cause of Neuropathic Pain in Schwannomatosis.

Schwannomatosis is the third form of neurofibromatosis and characterized by the occurrence of multiple schwannomas. The most prominent symptom is chronic pain. We aimed to test whether pain in schwannomatosis might be caused by small-fiber neuropathy. Twenty patients with schwannomatosis underwent neurological examination and nerve conduction studies. Levels of pain perception as well as anxiety and depression were assessed by established questionnaires. Quantitative sensory testing (QST) and laser-evoked potentials (LEP) were performed on patients and controls. Whole-body magnetic resonance imaging (wbMRI) and magnetic resonance neurography (MRN) were performed to quantify tumors and fascicular nerve lesions; skin biopsies were performed to determine intra-epidermal nerve fiber density (IENFD). All patients suffered from chronic pain without further neurological deficits. The questionnaires indicated neuropathic symptoms with significant impact on quality of life. Peripheral nerve tumors were detected in all patients by wbMRI. MRN showed additional multiple fascicular nerve lesions in 16/18 patients. LEP showed significant faster latencies compared to normal controls. Finally, IENFD was significantly reduced in 13/14 patients. Our study therefore indicates the presence of small-fiber neuropathy, predominantly of unmyelinated C-fibers. Fascicular nerve lesions are characteristic disease features that are associated with faster LEP latencies and decreased IENFD. Together these methods may facilitate differential diagnosis of schwannomatosis.

Learn More >

Does Motor Cortex Engagement During Movement Preparation Differentially Inhibit Nociceptive Processing in Patients with Chronic Whiplash Associated Disorders, Chronic Fatigue Syndrome and Healthy Controls? An Experimental Study.

Patients with chronic fatigue syndrome (CFS) and chronic whiplash associated disorders (cWAD) present a reduced ability to activate central descending nociceptive inhibition after exercise, compared to measurements before exercise. It was hypothesised that a dysfunctional motor-induced inhibition of nociception partly explains this dysfunctional exercise-induced hypoalgesia. This study investigates if engagement of the motor system during movement preparation inhibits nociception-evoked brain responses in these patients as compared to healthy controls (HC).

Learn More >

Anhedonia to Gentle Touch in Fibromyalgia: Normal Sensory Processing but Abnormal Evaluation.

Social touch is important for interpersonal interaction. Gentle touch and slow brushing are typically perceived as pleasant, the degree of pleasantness is linked to the activity of the C-tactile (CT) fibers, a class of unmyelinated nerves in the skin. The inability to experience pleasure in general is called anhedonia, a common phenomenon in the chronic pain condition fibromyalgia. Here, we studied the perception and cortical processing of gentle touch in a well-characterized cohort of fibromyalgia. Patients and controls participated in functional brain imaging while receiving tactile stimuli (brushing) on the forearm. They were asked to provide ratings of pleasantness of the tactile stimulus and ongoing pain. We found high distress, pain catastrophizing, and insomnia, and a low perceived state of health in fibromyalgia. Further, patients rated both slow (CT-optimal) and fast (CT-suboptimal) brushing as less pleasant than healthy participants. While there was no difference in brain activity during touch, patients showed deactivation in the right posterior insula (contralateral to the stimulated arm) during pleasantness rating and activation during pain rating. The opposite pattern was observed in healthy participants. Voxel-based morphometry analysis revealed reduced grey matter density in patients, in the bilateral hippocampus and anterior insula. Our results suggest anhedonia to gentle touch in fibromyalgia with intact early-stage sensory processing but dysfunctional evaluative processing. These findings contribute to our understanding of the mechanisms underlying anhedonia in fibromyalgia.

Learn More >

Impaired mesocorticolimbic connectivity underlies increased mechanical pain sensitivity in chronic low back pain.

Chronic low back pain (cLBP) is a prevalent disorder. A growing body of evidence linking the pathology of the reward network to chronic pain suggests that pain sensitization may contribute to cLBP chronification via disruptions of mesocortical and mesolimbic circuits in the reward system. Resting-state (RS) functional magnetic resonance imaging (fMRI) data was acquired from 90 patients with cLBP and 74 matched pain-free controls (HCs) at baseline and after a manipulation for back pain intensification. The ventral tegmental area (VTA) was chosen as a seed region to perform RS functional connectivity (FC) analysis. Baseline rsFC of both the mesocortical (between the VTA and bilateral rostral anterior cingulate cortex (rACC) / and medial prefrontal cortex (mPFC)) and mesolimbic (between the VTA and bilateral hippocampus/parahippocampus) pathways was reduced in patients with cLBP (vs. HCs). In addition, patients exhibiting higher back pain intensity (compared to the relatively lower back pain intensity condition) also showed increases in both mesocortical and mesolimbic connectivity, implicating these pathways in pain downregulation in cLBP. Mediation analysis further isolated the mesolimbic (VTA-hippocampus/ parahippocampus) dysconnectivity as a neural mechanism mediating the association between mechanical pain sensitivity (indexed by P40 pressure) and cLBP severity. In sum, the current study demonstrates deficient mesocorticolimbic connectivity in cLBP, with the mesolimbic dysconnectivity potentially mediating the contribution of pain sensitization to pain chronification. These reward network dysfunctions and purportedly, dopaminergic dysregulations, may help us to identify key brain targets of neuromodulation in the treatment of cLBP.

Learn More >

Central IRAK-4 kinase inhibition for the treatment of pain following nerve injury in rats.

There is ample evidence for the role of the immune system in developing chronic pain following peripheral nerve injury. Especially Toll-like receptors (TLRs) and their associated signaling components and pro-inflammatory cytokines such as IL-1β, induced after injury, are involved in nociceptive processes and believed to contribute to the manifestation of chronic neuropathic pain states. Whereas the inhibition of the kinase function of IRAK-4, a central kinase downstream of TLRs and IL-1 receptors (IL-1Rs), seems efficacious in various chronic inflammatory and autoimmune models, it's role in regulating chronic neuropathic pain remained elusive to date. Here, we examined whether pharmacological inhibition of IRAK-4 kinase activity using PF-06650833 and BMS-986147, two clinical-stage kinase inhibitors, is effective for controlling persistent pain following nerve injury. Both inhibitors potently inhibited TLR-triggered cytokine release in human peripheral blood mononuclear cell (PBMC) as well as human and rat whole blood cultures. BMS-986147 showing favorable pharmacokinetic (PK) properties, significantly inhibited R848-triggered plasma TNF levels in a rat in vivo cytokine release model after single oral dosing. However, BMS-986147 dose dependently reversed cold allodynia in a rat chronic constriction injury (CCI) model following intrathecal administration only, supporting the notion that central neuro-immune modulation is beneficial for treating chronic neuropathic pain. Although both inhibitors were efficacious in inhibiting IL-1β- or TLR-triggered cytokine release in rat dorsal root ganglion cultures, only partial efficacy was reached in IL-1β-stimulated human glial cultures indicating that inhibiting IRAK-4́s kinase function might be partially dispensable for human IL-1β driven neuroinflammation. Overall, our data demonstrate that IRAK-4 inhibitors could provide therapeutic benefit in chronic pain following nerve injury, and the central driver for efficacy in the neuropathic pain model as well as potential side effects of centrally available IRAK-4 inhibitors warrant further investigation to develop effective analgesia for patients in high unmet medical need.

Learn More >

Search