I am a
Home I AM A Search Login

Accepted

Share this

Impact of acute inflammation on the extinction of aversive gut memories.

Impaired extinction of pain-related fear memories can lead to persistent or resurging fear of pain, contributing to the development and maintenance of chronic pain conditions. The mechanisms underlying maladaptive pain-related learning and memory processes remain incompletely understood, particularly in the context of interoceptive, visceral pain. Inflammation is known to interfere with learning and memory, but its effects on the extinction of pain-related fear memories have never been tested. In a randomized, double-blind, placebo-controlled study, we assessed the impact of experimental acute inflammation on the extinction and reinstatement of conditioned visceral pain-related fear. Forty healthy male volunteers underwent differential fear conditioning with visceral pain as clinically relevant unconditioned stimulus (US). Participants then received an intravenous injection of either 0.8ng/kg lipopolysaccharide (LPS) as inflammatory stimulus or physiological saline as placebo, and extinction training was conducted at the peak of the inflammatory response. Extinction recall and reinstatement tests were performed after overnight consolidation. Results showed that visceral pain represents an effective US, eliciting pronounced conditioned pain-related fear responses. Repeated unreinforced presentation of the pain-predictive cue during extinction training resulted in full extinction of the conditioned behavioral response. However, unexpected re-exposure to the US during reinstatement test resulted in return of fear. Despite pronounced LPS-induced effects on inflammatory markers, cortisol, and negative affect, we did not find evidence that acute inflammation resulted in altered fear extinction. The findings support the notion that visceral pain-related fear learning establishes a robust aversive memory trace that remains preserved during inhibitory learning, leaving a latent vulnerability for the return of fear. Inflammation during inhibitory learning did neither weaken nor further amplify this aversive memory trace, suggesting that it is rather resistant to acute inflammation-induced effects, at least in healthy individuals with no additional vulnerability factors.

Learn More >

ErbB1-dependent signalling and vesicular trafficking in primary afferent nociceptors associated with hypersensitivity in neuropathic pain.

Effective analgesic treatment for neuropathic pain remains an unmet need, so previous evidence that epidermal growth factor receptor inhibitors (EGFRIs) provide unexpected rapid pain relief in a clinical setting points to a novel therapeutic opportunity. The present study utilises rodent models to address the cellular and molecular basis for the findings, focusing on primary sensory neurons because clinical pain relief is provided not only by small molecule EGFRIs, but also by the anti-EGFR antibodies cetuximab and panitumumab, which are unlikely to access the central nervous system in therapeutic concentrations. We report robust, rapid and dose-dependent analgesic effects of EGFRIs in two neuropathic pain models, matched by evidence with highly selective antibodies that expression of the EGFR (ErbB1 protein) is limited to small nociceptive afferent neurons. As other ErbB family members can heterodimerise with ErbB1, we investigated their distribution, showing consistent co-expression of ErbB2 but not ErbB3 or ErbB4, with ErbB1 in cell bodies of nociceptors, as well as providing evidence for direct molecular interaction of ErbB1 with ErbB2 in situ. Co-administration of selective ErbB1 and ErbB2 inhibitors produced clear evidence of greater-than-additive, synergistic analgesia; highlighting the prospect of a unique new combination therapy in which enhanced efficacy could be accompanied by minimisation of side-effects. Peripheral (intraplantar) administration of EGF elicited hypersensitivity only following nerve injury and this was reversed by local co-administration of selective inhibitors of either ErbB1 or ErbB2. Investigating how ErbB1 is activated in neuropathic pain, we found evidence for a role of Src tyrosine kinase, which can be activated by signals from inflammatory mediators, chemokines and cytokines during neuroinflammation. Considering downstream consequences of ErbB1 activation in neuropathic pain, we found direct recruitment to ErbB1 of an adapter for PI 3-kinase and Akt signalling together with clear Akt activation and robust analgesia from selective Akt inhibitors. The known Akt target and regulator of vesicular trafficking, AS160 was strongly phosphorylated at a perinuclear location during neuropathic pain in an ErbB1-, ErbB2- and Akt-dependent manner, corresponding to clustering and translocation of an AS160-partner, the vesicular chaperone, LRP1. Exploring whether neuronal ion channels that could contribute to hyperexcitability might be transported by this vesicular trafficking pathway we were able to identify Na1.9, (Na1.8) and Ca1.2 moving towards the plasma membrane or into proximal axonal locations – a process prevented by ErbB1 or Akt inhibitors. Overall these findings newly reveal both upstream and downstream signals to explain how ErbB1 can act as a signalling hub in neuropathic pain models and identify the trafficking of key ion channels to neuronal subcellular locations likely to contribute to hyperexcitability. The new concept of combined treatment with ErbB1 plus ErbB2 blockers is mechanistically validated as a promising strategy for the relief of neuropathic pain.

Learn More >

Pain Neuroscience Education for Children with Functional Abdominal Pain Disorders: A Randomized Comparative Pilot Study.

This article explores the effectiveness of a newly developed Pain Neuroscience Education program for children (PNE4Kids) with functional abdominal pain disorder (FAPD). Children (6-12 years) with FAPD were randomly assigned to 1) the experimental group ( = 14), participating in one hypnotherapy session (i.e., usual care) and one additional PNE4Kids session, or 2) the control group ( = 14), participating in two hypnotherapy sessions. Parental pain catastrophizing, the child's functional disability (parental-proxy), pain-related fear (parent-proxy) and pain intensity, were assessed at baseline and one and three weeks after each therapy session. Pressure algometry and a conditioned pain modulation paradigm were performed at baseline and three weeks after completion of the last therapy session. Parents from both the experimental as well as the control group showed significantly less parental pain catastrophizing ( < 0.01). Children showed significantly less functional disability ( < 0.05), pain-related fear ( < 0.01) and local pressure pain sensitivity ( < 0.05) at short-term follow-up (three weeks after last intervention) in both groups. No significant ( > 0.05) between-group differences were found. Hypnotherapy combined with PNE4Kids did not result in better clinical outcomes compared to hypnotherapy alone. Study limitations include the application of one single PNE4Kids session and the short follow-up time.

Learn More >

Upregulation of Mlxipl induced by cJun in the spinal dorsal horn after peripheral nerve injury counteracts mechanical allodynia by inhibiting neuroinflammation.

Mlxipl regulates glucose metabolism, lipogenesis and tumorigenesis and has a wide-ranging impact on human health and disease. However, the role of Mlxipl in neuropathic pain remains unknown. In this study, we found that Mlxipl was increased in the ipsilateral L4-L6 spinal dorsal horn after Spared Nerve Injury surgery. Knockdown of Mlxipl in the ipsilateral L4-L6 spinal dorsal horn by intraspinal microinjection aggravated Spared Nerve Injury-induced mechanical allodynia and inflammation in the spinal dorsal horn, on the contrary, overexpression of Mlxipl inhibited mechanical allodynia and inflammation. Subsequently, the rat Mlxipl promoter was analyzed using bioinformatics methods to predict the upstream transcription factor cJun. Luciferase assays and ChIP-qPCR confirmed that cJun bound to the promoter of Mlxipl and enhanced its expression. Finally, we demonstrated that Mlxipl inhibited the inflammatory responses of lipopolysaccharide-induced microglia and that Mlxipl was regulated by the transcription factor cJun. These findings suggested that cJun-induced Mlxipl upregulation in the spinal dorsal horn after peripheral nerve injury provided a protective mechanism for the development and progression of neuropathic pain by inhibiting microglial-derived neuroinflammation. Targeting Mlxipl in the spinal dorsal horn might represent an effective strategy for the treatment of neuropathic pain.

Learn More >

High-salt diet decreases mechanical thresholds in mice that is mediated by a CCR2-dependent mechanism.

Though it is well-known that a high-salt diet (HSD) is associated with many chronic diseases, the effects of long-term high-salt intake on physiological functions and homeostasis remain elusive. In this study, we investigated whether and how an HSD affects mouse nociceptive thresholds, and myeloid cell trafficking and activation.

Learn More >

Multidimensional assessment of the effects of erenumab in chronic migraine patients with previous unsuccessful preventive treatments: a comprehensive real-world experience.

erenumab was safe and effective in clinical trials for the prevention of migraine. However, real-life data are still lacking. Here we report the clinical experience from an Italian real-world setting using erenumab in patients with chronic migraine experiencing previous unsuccessful preventive treatments.

Learn More >

Sex-Specific Disruption of Distinct mPFC Inhibitory Neurons in Spared-Nerve Injury Model of Neuropathic Pain.

The medial prefrontal cortex (mPFC) modulates a range of behaviors, including responses to noxious stimuli. While various pain modalities alter mPFC function, our understanding of changes to specific cell types underlying pain-induced mPFC dysfunction remains incomplete. Proper activity of cortical GABAergic interneurons is essential for normal circuit function. We find that nerve injury increases excitability of layer 5 parvalbumin-expressing neurons in the prelimbic (PL) region of the mPFC from male, but not female, mice. Conversely, nerve injury dampens excitability in somatostatin-expressing neurons in layer 2/3 of the PL region; however, effects are differential between males and females. Nerve injury slightly increases the frequency of spontaneous excitatory post-synaptic currents (sEPSCs) in layer 5 parvalbumin-expressing neurons in males but reduces frequency of sEPSCs in layer 2/3 somatostatin-expressing neurons in females. Our findings provide key insight into how nerve injury drives maladaptive and sex-specific alterations to GABAergic circuits in cortical regions implicated in chronic pain.

Learn More >

What Works? Processes of Change in a Transdiagnostic Exposure Treatment for Patients with Chronic Pain and Emotional Problems.

We recently developed a transdiagnostic exposure treatment ("the hybrid treatment") for chronic pain patients with concurrent emotional difficulties. This paper investigates the hypothesized treatment processes, specifically: a) if changes on pain-related dysregulation (catastrophizing, fear-avoidance and non-acceptance of pain) and general emotion dysregulation (difficulties to regulate a broad spectrum of emotional responses) mediate effects on outcomes; and b) if mediation is more pronounced for patients who score higher on these processes pre-treatment.

Learn More >

Reliability, Discriminative and Prognostic Validity of the MultiDimensional Symptom Index in Musculoskeletal Trauma.

The MultiDimensional Symptom Index (MSI) is a 10-item parallel score frequency x interference patient reported outcome for use in clinical pain research. This manuscript describes the results of evaluations related to measurement stability, discriminative accuracy when screening for major depressive disorder (MDD), and prognostic validity when predicting recovery trajectories following acute musculoskeletal (MSK) trauma.

Learn More >

Cluster headache therapies: pharmacology and mode of action.

Cluster headache (CH) is the most common trigeminal autonomic cephalalgia with a significant need for novel treatment options. While the use of most of the acute CH medications is supported by clinical trials and based on a pathophysiological concept for the generation of pain, the scientific evidence for preventive CH medications is very limited.

Learn More >

Search