I am a
Home I AM A Search Login

Accepted

Share this

Methods to discriminate between mechanism-based categories of pain experienced in the musculoskeletal system: a systematic review.

Mechanism-based classification of pain has been advocated widely to aid tailoring of interventions for individuals experiencing persistent musculoskeletal pain. Three pain mechanism categories are defined by the International Association for the Study of Pain: nociceptive, neuropathic, and nociplastic pain. Discrimination between them remains challenging. This study aimed to: build on a framework developed to converge the diverse literature of pain mechanism categories to systematically review methods purported to discriminate between them; synthesise and thematically analyse these methods to identify convergence and divergence of opinion; and report validation, psychometric properties and strengths/weaknesses of these methods. The search strategy identified papers discussing methods to discriminate between mechanism-based categories of pain experienced in the musculoskeletal system. Studies that assessed validity of methods to discriminate between categories were assessed for quality. Extraction and thematic analysis were undertaken on 184 papers. Data synthesis identified 200 methods in five themes: clinical examination, quantitative sensory testing, imaging, diagnostic and laboratory testing, and pain-type questionnaires. Few methods have been validated for discrimination between pain mechanism categories. There was general convergence but some disagreement regarding findings that discriminate between pain mechanism categories. A combination of features and methods, rather than a single method, was generally recommended to discriminate between pain mechanism categories. Two major limitations were identified: overlap of findings of methods between categories due to mixed presentations, and many methods considered discrimination between two pain mechanism categories but not others. The results of this review provide a foundation to refine methods to differentiate mechanisms for musculoskeletal pain.

Learn More >

Stratification of patients based on the neuropathic pain symptom inventory (NPSI): development and validation of a new algorithm.

The personalization of neuropathic pain treatment could be improved by identifying specific sensory phenotypes (i.e. specific combinations of symptoms and signs) predictive of the response to different classes of drugs. A simple and reliable phenotyping method is required for such a strategy. We investigated the utility of an algorithm for stratifying patients into clusters corresponding to specific combinations of neuropathic symptoms assessed with the Neuropathic Pain Symptom Inventory (NPSI). Consistent with previous results, we first confirmed, in a cohort of 628 patients, the existence of a structure consisting of three clusters of patients characterized by higher NPSI scores for: pinpointed pain (cluster 1), evoked pain (cluster 2) or deep pain (cluster 3). From these analyses, we derived a specific algorithm for assigning each patient to one of these three clusters. We then assessed the clinical relevance of this algorithm for predicting treatment response, through post hoc analyses of two previous controlled trials of the effects of subcutaneous injections of botulinum toxin A (BTX-A). Each of the 97 patients with neuropathic pain included in these studies was individually allocated to one cluster, by applying the algorithm to their baseline NPSI responses. We found significant effects of BTX-A relative to placebo in clusters 2 and 3, but not in cluster 1, suggesting that this approach was, indeed, relevant. Finally, we developed and performed a preliminary validation of a web-based version of the NPSI and algorithm for the stratification of patients in both research and daily practice.

Learn More >

Comprehensive Exonic Sequencing of Hemiplegic Migraine-Related Genes in a Cohort of Suspected Probands Identifies Known and Potential Pathogenic Variants.

Hemiplegic migraine (HM) is a rare migraine disorder with aura subtype including temporary weakness and visual, sensory, and/or speech symptoms. To date, three main genes-, , and -have been found to cause HM. These encode ion channels or transporters, important for regulating neuronal ion balance and synaptic transmission, leading to HM being described as a channelopathy. However, <20% of HM cases referred for genetic testing have mutations in these genes and other genes with roles in ion and solute transport, and neurotransmission has also been implicated in some HM cases. In this study, we performed whole exome sequencing for 187 suspected HM probands referred for genetic testing, but found to be negative for , , and mutations, and applied targeted analysis of whole exome sequencing data for rare missense or potential protein-altering variants in the , , , , , , and genes. We identified known mutations and some potentially pathogenic variants in each of these genes in specific cases, suggesting that their screening improves molecular diagnosis for the disorder. However, the majority of HM patients were found not to have candidate mutations in any of the previously reported HM genes, suggesting that additional genetic factors contributing to the disorder are yet to be identified.

Learn More >

Diminished corticomotor excitability in Gulf War Illness related chronic pain symptoms; evidence from TMS study.

Chronic diffuse body pain is unequivocally highly prevalent in Veterans who served in the 1990-91 Persian Gulf War and diagnosed with Gulf War Illness (GWI). Diminished motor cortical excitability, as a measurement of increased resting motor threshold (RMT) with transcranial magnetic stimulation (TMS), is known to be associated with chronic pain conditions. This study compared RMT in Veterans with GWI related diffuse body pain including headache, muscle and joint pain with their military counterparts without GWI related diffuse body pain. Single pulse TMS was administered over the left motor cortex, using anatomical scans of each subject to guide the TMS coil, starting at 25% of maximum stimulator output (MSO) and increasing in steps of 2% until a motor response with a 50 µV peak to peak amplitude, defined as the RMT, was evoked at the contralateral flexor pollicis brevis muscle. RMT was then analyzed using Repeated Measures Analysis of Variance (RM-ANOVA). Veterans with GWI related chronic headaches and body pain (N = 20, all males) had a significantly (P < 0.001) higher average RMT (% ± SD) of 77.2% ± 16.7% compared to age and gender matched military controls (N = 20, all males), whose average was 55.6% ± 8.8%. Veterans with GWI related diffuse body pain demonstrated a state of diminished corticomotor excitability, suggesting a maladaptive supraspinal pain modulatory state. The impact of this observed supraspinal functional impairment on other GWI related symptoms and the potential use of TMS in rectifying this abnormality and providing relief for pain and co-morbid symptoms requires further investigation.Trial registration: This study was registered on January 25, 2017, on ClinicalTrials.gov with the identifier: NCT03030794. Retrospectively registered. https://clinicaltrials.gov/ct2/show/NCT03030794 .

Learn More >

Descending modulation of laryngeal vagal sensory processing in the brainstem orchestrated by the submedius thalamic nucleus.

The nodose and jugular vagal ganglia supply sensory innervation to the airways and lungs. Jugular vagal airway sensory neurons wire into a brainstem circuit with ascending projections into the submedius thalamic nucleus (SubM) and ventrolateral orbital cortex (VLO), regions known to regulate the endogenous analgesia system. Here we investigate whether the SubM-VLO circuit exerts descending regulation over airway vagal reflexes in male and female rats using a range of neuroanatomical tracing, reflex physiology and chemogenetic techniques. Anterograde and retrograde neuroanatomical tracing confirmed connectivity of the SubM and VLO. Laryngeal stimulation in anesthetized rats reduced respiration, a reflex that was potently inhibited by activation of SubM. Conversely, inhibition of SubM potentiated laryngeal reflex responses, while prior lesions of VLO abolished the effects of SubM stimulation. In conscious rats, selective chemogenetic activation of SubM neurons specifically projecting to VLO significantly inhibited respiratory responses evoked by inhalation of the nociceptor stimulant capsaicin. Jugular vagal inputs to SubM via the medullary paratrigeminal nucleus were confirmed using anterograde transsynaptic conditional herpes viral tracing. Respiratory responses evoked by microinjections of capsaicin into the paratrigeminal nucleus were significantly attenuated by SubM stimulation, whereas those evoked via the nucleus of the solitary tract were unaltered. These data suggest jugular vagal sensory pathways input to a nociceptive thalamocortical circuit capable of regulating jugular sensory processing in the medulla. This circuit organization suggests an intersection between vagal sensory pathways and the endogenous analgesia system, potentially important for understanding vagal sensory processing in health and mechanisms of hypersensitivity in disease.Jugular vagal sensory pathways are increasingly recognized for their important role in defensive respiratory responses evoked from the airways. Jugular ganglia neurons wire into a central circuit that is notable for overlapping with somatosensory processing networks in the brain rather than the viscerosensory circuits in receipt of inputs from the nodose vagal ganglia. Here we demonstrate a novel and functionally relevant example of intersection between vagal and somatosensory processing in the brain. The findings of the study offer new insights into interactions between vagal and spinal sensory processing, including the medullary targets of the endogenous analgesia system, and offer new insights into the central processes involved in airway defense in health and disease.

Learn More >

The input-output relation of primary nociceptive neurons is determined by the morphology of the peripheral nociceptive terminals.

The output from the peripheral terminals of primary nociceptive neurons, which detect and encode the information regarding noxious stimuli, is crucial in determining pain sensation. The nociceptive terminal endings are morphologically complex structures assembled from multiple branches of different geometry, which converge in a variety of forms to create the terminal tree. The output of a single terminal is defined by the properties of the transducer channels producing the generation potentials and voltage-gated channels, translating the generation potentials into action potential firing. However, in the majority of cases, noxious stimuli activate multiple terminals; thus, the output of the nociceptive neuron is defined by the integration and computation of the inputs of the individual terminals. Here we used a computational model of nociceptive terminal tree to study how the architecture of the terminal tree affects the input-output relation of the primary nociceptive neurons. We show that the input-output properties of the nociceptive neurons depend on the length, the axial resistance, and location of individual terminals. Moreover, we show that activation of multiple terminals by a capsaicin-like current allows summation of the responses from individual terminals, thus leading to increased nociceptive output. Stimulation of the terminals in simulated models of inflammatory or nociceptive hyperexcitability led to a change in the temporal pattern of action potential firing, emphasizing the role of temporal code in conveying key information about changes in nociceptive output in pathological conditions, leading to pain hypersensitivity.Noxious stimuli are detected by terminal endings of primary nociceptive neurons, which are organized into morphologically complex terminal trees. The information from multiple terminals is integrated along the terminal tree, computing the neuronal output, which propagates towards the CNS, thus shaping the pain sensation. Here we revealed that the structure of the nociceptive terminal tree determines the output of nociceptive neurons. We show that the integration of noxious information depends on the morphology of the terminal trees and how this integration and, consequently, the neuronal output change under pathological conditions. Our findings help to predict how nociceptive neurons encode noxious stimuli and how this encoding changes in pathological conditions, leading to pain.

Learn More >

Parallel ascending spinal pathways for affective touch and pain.

The anterolateral pathway consists of ascending spinal tracts that convey pain, temperature and touch information from the spinal cord to the brain. Projection neurons of the anterolateral pathway are attractive therapeutic targets for pain treatment because nociceptive signals emanating from the periphery are channelled through these spinal projection neurons en route to the brain. However, the organizational logic of the anterolateral pathway remains poorly understood. Here we show that two populations of projection neurons that express the structurally related G-protein-coupled receptors (GPCRs) TACR1 and GPR83 form parallel ascending circuit modules that cooperate to convey thermal, tactile and noxious cutaneous signals from the spinal cord to the lateral parabrachial nucleus of the pons. Within this nucleus, axons of spinoparabrachial (SPB) neurons that express Tacr1 or Gpr83 innervate distinct sets of subnuclei, and strong optogenetic stimulation of the axon terminals induces distinct escape behaviours and autonomic responses. Moreover, SPB neurons that  express Gpr83 are highly sensitive to cutaneous mechanical stimuli and receive strong synaptic inputs from both high- and low-threshold primary mechanosensory neurons. Notably, the valence associated with activation of SPB neurons that express Gpr83 can be either positive or negative, depending on stimulus intensity. These findings reveal anatomically, physiologically and functionally distinct subdivisions of the SPB tract that underlie affective aspects of touch and pain.

Learn More >

Digital manikins to self-report pain on a smartphone: a systematic review of mobile apps.

Chronic pain is the leading cause of disability. Improving our understanding of pain occurrence and treatment effectiveness requires robust methods to measure pain at scale. Smartphone-based pain manikins are human-shaped figures to self-report location-specific aspects of pain on people's personal mobile devices.

Learn More >

Approximation to pain-signaling network in humans by means of migraine.

Nociceptive signals are processed within a pain-related network of the brain. Migraine is a rather specific model to gain insight into this system. Brain networks may be described by white matter tracts interconnecting functionally defined gray matter regions. Here, we present an overview of the migraine-related pain network revealed by this strategy. Based on diffusion tensor imaging data from subjects in the Human Connectome Project (HCP) database, we used a global tractography approach to reconstruct white matter tracts connecting brain regions that are known to be involved in migraine-related pain signaling. This network includes an ascending nociceptive pathway, a descending modulatory pathway, a cortical processing system, and a connection between pain-processing and modulatory areas. The insular cortex emerged as the central interface of this network. Direct connections to visual and auditory cortical association fields suggest a potential neural basis of phono- or photophobia and aura phenomena. The intra-axonal volume (V ) as a measure of fiber integrity based on diffusion microstructure was extracted using an innovative supervised machine learning approach in form of a Bayesian estimator. Self-reported pain levels of HCP subjects were positively correlated with tract integrity in subcortical tracts. No correlation with pain was found for the cortical processing systems.

Learn More >

Intranasal oxytocin as a treatment for chronic pelvic pain: A randomized controlled feasibility study.

To investigate the effect of intranasal oxytocin on chronic pelvic pain in a randomized, double-blind, within-subject crossover trial. Aims included: (1) determine intranasal oxytocin's effect on pain intensity and pain interference relative to placebo; (2) assess feasibility and acceptability.

Learn More >

Search