I am a
Home I AM A Search Login

Accepted

Share this

Safety and efficacy of prednisone versus placebo in short-term prevention of episodic cluster headache: a multicentre, double-blind, randomised controlled trial.

Prednisone is commonly used for initial short-term therapy of episodic cluster headaches before preventive medication such as verapamil becomes effective, but this strategy has not been tested in large randomised trials. We aimed to access the safety and efficacy of this treatment approach.

Learn More >

The Neuroimmunology of Chronic Pain: From Rodents to Humans.

Chronic pain, encompassing conditions, such as low back pain, arthritis, persistent post-surgical pain, fibromyalgia, and neuropathic pain disorders, is highly prevalent but remains poorly treated. The vast majority of therapeutics are directed solely at neurons, despite the fact that signaling between immune cells, glia, and neurons is now recognized as indispensable for the initiation and maintenance of chronic pain. This review highlights recent advances in understanding fundamental neuroimmune signaling mechanisms and novel therapeutic targets in rodent models of chronic pain. We further discuss new technological developments to study, diagnose, and quantify neuroimmune contributions to chronic pain in patient populations.

Learn More >

Deficiency of Inositol Monophosphatase Activity Decreases Phosphoinositide Lipids and Enhances TRPV1 Function .

Membrane remodeling by inflammatory mediators influences the function of sensory ion channels. The capsaicin- and heat-activated TRPV1 channel contributes to neurogenic inflammation and pain hypersensitivity, in part due to its potentiation downstream of phospholipase C-coupled receptors that regulate phosphoinositide lipid content. Here, we determined the effect of phosphoinositide lipids on TRPV1 function by combining genetic dissection, diet supplementation, behavioral, biochemical, and functional analyses in As capsaicin elicits hot and pain sensation in mammals, transgenic TRPV1 worms exhibit an aversive response to capsaicin. TRPV1 worms with low levels of phosphoinositide lipids display an enhanced response to capsaicin, whereas phosphoinositide lipid supplementation reduces TRPV1-mediated responses. A worm carrying a TRPV1 construct lacking the distal C-terminal domain features an enhanced response to capsaicin, independent of the phosphoinositide lipid content. Our results demonstrate that TRPV1 activity is enhanced when the phosphoinositide lipid content is reduced, and the C-terminal domain is key to determining agonist response TRPV1 is an essential protein for the mechanism whereby noxious stimuli, such as high temperatures and chemicals, cause pain. TRPV1 undergoes sensitization, a process in which inflammatory molecules enhance its response to other stimuli, thereby promoting pain hypersensitivity. Proalgesic agents produced in response to tissue injury activate PLC-coupled receptors and alter the membrane phosphoinositide lipid content. The mechanism by which phosphoinositide lipids modulate TRPV1 function has remained controversial. Determining whether membrane phosphoinositides are positive or negative regulators of TRPV1 function is critical for developing therapeutic strategies to ameliorate TRPV1-mediated inflammatory pain. We address the role of phosphoinositide lipids on TRPV1 function using an approach and report that phosphoinositide lipids reduce TRPV1 activity .

Learn More >

Virtual Reality in Pain Rehabilitation for Youth With Chronic Pain: Pilot Feasibility Study.

In the field of pain, virtual reality (VR) technology has been increasingly common in the context of procedural pain management. As an interactive technology tool, VR has the potential to be extended beyond acute pain management to chronic pain rehabilitation with a focus on increasing engagement with painful or avoided movements.

Learn More >

Daily associations between sleep and opioid use among adults with comorbid symptoms of insomnia and fibromyalgia.

Disturbed sleep and use of opioid pain medication are common among individuals with chronic pain. Anecdotally, opioids are thought to promote sleep by relieving pain. This study aimed to determine whether opioid use is associated with daily sleep parameters (and vice versa) among adults with comorbid symptoms of insomnia and fibromyalgia.

Learn More >

LncRNA KCNA2-AS regulates spinal astrocyte activation through STAT3 to affect postherpetic neuralgia.

Postherpetic neuralgia (PHN) is the most common complication of herpes zoster, but the mechanism of PHN is still unclear. Activation of spinal astrocytes is involved in PHN. Our study aims to explore whether lncRNA KCNA2 antisense RNA (KCNA2-AS) regulates spinal astrocytes in PHN through signal transducers and activators of transcription 3 (STAT3).

Learn More >

Alternate thermal stimulation ameliorates thermal sensitivity and modulates calbindin-D 28K expression in lamina I and II and dorsal root ganglia in a mouse spinal cord contusion injury model.

Neuropathic pain (NP) is a common complication that negatively affects the lives of patients with spinal cord injury (SCI). The disruption in the balance of excitatory and inhibitory neurons in the spinal cord dorsal horn contributes to the development of SCI and induces NP. The calcium-binding protein (CaBP) calbindin-D 28K (CaBP-28K) is highly expressed in excitatory interneurons, and the CaBP parvalbumin (PV) is present in inhibitory neurons in the dorsal horn. To better define the changes in the CaBPs contributing to the development of SCI-induced NP, we examined the changes in CaBP-28K and PV staining density in the lumbar (L4-6) lamina I and II, and their relationship with NP after mild spinal cord contusion injury in mice. We additionally examined the effects of alternate thermal stimulation (ATS). Compared with sham mice, injured animals developed mechanical allodynia in response to light mechanical stimuli and exhibited mechanical hyporesponsiveness to noxious mechanical stimuli. The decreased response latency to heat stimuli and increased response latency to cold stimuli at 7 days post injury suggested that the injured mice developed heat hyperalgesia and cold hypoalgesia, respectively. Temperature preference tests showed significant warm allodynia after injury. Animals that underwent ATS (15-18 and 35-40°C; +5 minutes/stimulation/day; 5 days/week) displayed significant amelioration of heat hyperalgesia, cold hypoalgesia, and warm allodynia after 2 weeks of ATS. In contrast, mechanical sensitivity was not influenced by ATS. Analysis of the CaBP-28K positive signal in L4-6 lamina I and II indicated an increase in staining density after SCI, which was associated with an increase in the number of CaBP-28K-stained L4-6 dorsal root ganglion (DRG) neurons. ATS decreased the CaBP-28K staining density in L4-6 spinal cord and DRG in injured animals, and was significantly and strongly correlated with ATS alleviation of pain behavior. The expression of PV showed no changes in lamina I and II after ATS in SCI animals. Thus, ATS partially decreases the pain behavior after SCI by modulating the changes in CaBP-associated excitatory-inhibitory neurons.

Learn More >

Non-invasive brain stimulation as a tool to decrease chronic pain in current opiate users: A parametric evaluation of two promising cortical targets.

Poorly controlled chronic pain can lead to non-prescription use of opiates, which is a growing crisis in our communities. Transcranial magnetic stimulation (TMS) is a non-invasive therapeutic tool which has emerged as a potential treatment option for these patients. It is still unclear, however, if the dorsolateral prefrontal cortex (DLPFC) or the motor cortex (MC) is a more effective treatment location. The purpose of this study was to directly compare the effects of DLPFC versus MC TMS on pain severity and the urge to use opiates among chronic pain patients.

Learn More >

Cannabidiol for Pain Treatment: Focus on Pharmacology and Mechanism of Action.

Cannabis has a long history of medical use. Although there are many cannabinoids present in cannabis, Δ9tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) are the two components found in the highest concentrations. CBD itself does not produce typical behavioral cannabimimetic effects and was thought not to be responsible for psychotropic effects of cannabis. Numerous anecdotal findings testify to the therapeutic effects of CBD, which in some cases were further supported by research findings. However, data regarding CBD's mechanism of action and therapeutic potential are abundant and omnifarious. Therefore, we review the basic research regarding molecular mechanism of CBD's action with particular focus on its analgesic potential. Moreover, this article describes the detailed analgesic and anti-inflammatory effects of CBD in various models, including neuropathic pain, inflammatory pain, osteoarthritis and others. The dose and route of the administration-dependent effect of CBD, on the reduction in pain, hyperalgesia or allodynia, as well as the production of pro and anti-inflammatory cytokines, were described depending on the disease model. The clinical applications of CBD-containing drugs are also mentioned. The data presented herein unravel what is known about CBD's pharmacodynamics and analgesic effects to provide the reader with current state-of-art knowledge regarding CBD's action and future perspectives for research.

Learn More >

Brain imaging signature of neuropathic pain phenotypes in small-fiber neuropathy: altered thalamic connectome and its associations with skin nerve degeneration.

Small-fiber neuropathy (SFN) has been traditionally considered as a pure disorder of peripheral nervous system, characterized by neuropathic pain and degeneration of small-diameter nerve fibers in the skin. Previous functional MRI studies revealed abnormal activations of pain networks, but the structural basis underlying such maladaptive functional alterations remains elusive. We applied diffusion tensor imaging (DTI) to explore the influences of SFN on brain microstructures. Forty-one pathology-proven SFN patients with reduced skin innervation were recruited. White matter connectivity with the thalamus as the seed was assessed using probabilistic tractography of DTI. SFN patients had reduced thalamic connectivity with the insular cortex and the sensorimotor areas including the postcentral and precentral gyri. Furthermore, the degree of skin nerve degeneration, measured by intraepidermal nerve fiber density (IENFd), was associated with the reduction of connectivity between the thalamus and pain-related areas according to different neuropathic pain phenotypes, specifically, the frontal, cingulate, motor, and limbic areas for burning, electrical shocks, tingling, mechanical allodynia, and numbness. Despite altered white matter connectivity, there was no change in white matter integrity assessed with fractional anisotropy. Our findings indicate that alterations in structural connectivity may serve as a biomarker of maladaptive brain plasticity that contributes to neuropathic pain after peripheral nerve degeneration.

Learn More >

Search