I am a
Home I AM A Search Login

Accepted

Share this

Recently available and emerging therapeutic strategies for the acute and prophylactic management of cluster headache: a systematic review and expert opinion.

: Although it causes a huge burden to sufferers, cluster headache (CH), remains an undertreated condition, partly due to the absence of established acute and prophylactic treatment options. New therapeutic approaches providing fast and safe relief from CH are needed. : A systematic review was conducted, according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) recommendation on recently published (last 5 years) papers on CH treatment. The authors also collected preliminary results from ongoing trials on emerging therapeutic/preventive pharmacological and interventional approaches for CH. Studies and results are reviewed and discussed. : The complexity of CH pathophysiology prevents the definition of reliable acute and preventive treatments. In the real-world clinical setting, several treatments are combined to provide relief to patients and increase their quality of life. Drugs targeting neuropeptides or their receptors within the trigeminovascular network are of particular interest to prevent CH attacks. Calcitonin gene-related peptide (CGRP) blockade seems attractive and promising, but studies on anti-CGRP monoclonal antibodies indicated rather modest or even absence of a prophylactic effect. A deeper insight into CH pathophysiology, and combined approaches may lead the path to new, more effective and personalized CH therapies.

Learn More >

Quality of life and functional outcomes with tapentadol prolonged release in chronic musculoskeletal pain: analysis.

To investigate quality of life (QOL) and functionality changes in chronic pain during tapentadol prolonged release (PR) treatment. analysis of data from three Phase III trials in patients with osteoarthritis knee pain or low back pain. QOL and functionality changes were assessed by SF-36 scores. All SF-36 subdomain scores improved progressively to week 3 of tapentadol titration and were sustained during 12-week maintenance treatment. Improvements in SF-36 scores were similar between tapentadol dose groups (e.g., 200 to <300 mg vs ≥500 mg), with no greater effect from higher doses. QOL and functionality improvements were consistently greater with tapentadol PR than oxycodone controlled release. Tapentadol PR provides consistent, clinically relevant improvements in QOL and functionality in chronic pain.

Learn More >

Time course of efficacy of ubrogepant for the acute treatment of migraine: Clinical implications.

The full utility of an acute treatment requires examination of the entire time course of effect during a migraine attack. Here the time course of effect of ubrogepant is evaluated.

Learn More >

Nocebo response in human models of migraine: A systematic review and meta-analysis of randomized, double-blind, placebo-controlled, two-way crossover trials in migraine without aura and healthy volunteers.

Human models of migraine have been used for the past 30 years to test putative 'trigger' molecules and ascertain whether they induce migraine attacks in humans. However, nocebo effects using this model have never been systematically explored.

Learn More >

Evaluation of circulating microRNA expression in patients with trigeminal neuralgia: An observational study.

Trigeminal neuralgia (TN) is a chronic neuropathic pain that seriously affects the daily life of patients. There is increasing evidence that microRNAs (miRNAs) play an important role in the development of neuropathic pain.In this study, the TaqMan Low Density Array (TLDA) was used to analyze the serum miRNA levels of 28 TN patients, and 31 healthy people without any neuropathic pain were used as controls.The results showed that the expression profile of serum miRNA in TN patients was different from that in healthy controls. Compared with the control group, 13 miRNAs in the serum of TN patients were up-regulated and 115 miRNAs were down-regulated by >2 times. Quantitative reverse transcription PCR (RT-qPCR) analysis and receiver operating characteristic (ROC) curve were performed. The analysis further confirmed that the expression levels of 4 miRNAs, including miR-132-3p, miR-146b-5p, miR-155-5p, and miR-384, were significantly higher than those of healthy controls, and the difference was statistically significant.This study preliminarily confirmed the changes of serum miRNA expression profile in TN patients. Among them, 4 kinds of serum miRNA are likely to be related to the occurrence and development of TN.

Learn More >

Increase in trigeminal ganglion neurons that respond to both CGRP and PACAP in mouse models of chronic migraine and post-traumatic headache.

A large body of animal and human studies indicate that blocking peripheral calcitonin gene-related peptide (CGRP) and pituitary adenylate cyclase-activating polypeptide (PACAP) signaling pathways may prevent migraine episodes and reduce headache frequency. To investigate whether recurring migraine episodes alter the strength of CGRP and PACAP signaling in trigeminal ganglion (TG) neurons, we compared the number of TG neurons that respond to CGRP and to PACAP (CGRP-R and PACAP-R, respectively) under normal and chronic migraine-like conditions. In a mouse model of chronic migraine, repeated nitroglycerin (NTG) administration significantly increased the number of CGRP-R and PACAP-R neurons in TG but not dorsal root ganglia. In TG neurons that express endogenous αCGRP, repeated NTG led to a 7-fold increase in the number of neurons that respond to both CGRP and PACAP (CGRP-R&PACAP-R). The majority of these neurons were unmyelinated C-fiber nociceptors. This suggests that a larger fraction of CGRP signaling in TG nociceptors may be mediated through the autocrine mechanism, and the release of endogenous αCGRP can be enhanced by both CGRP and PACAP signaling pathways under chronic migraine condition. The number of CGRP-R&PACAP-R TG neurons was also increased in a mouse model of post-traumatic headache (PTH). Interestingly, low-dose interleukin-2 treatment, which completely reverses chronic migraine- and PTH-related behaviors in mouse models, also blocked the increase in both CGRP-R and PACAP-R TG neurons. Together, these results suggest that inhibition of both CGRP and PACAP signaling in TG neurons may be more effective in treating chronic migraine and PTH than targeting individual signaling pathways.

Learn More >

Predicting pain: differential pain thresholds during self-induced, externally induced, and imagined self-induced pressure pain.

During self-induced pain, a copy of the motor information from the body's own movement may help predict the painful sensation and cause down-regulation of pain. This phenomenon, called sensory attenuation, enables the distinction between self-produced stimuli versus stimuli produced by others. Sensory attenuation has been shown to occur also during imagined self-produced movements, but this has not been investigated for painful sensations. In the current study, the pressure pain thresholds of 40 healthy participants aged 18-35 years were assessed when pain was induced by the experimenter (other), by themselves (self), or by the experimenter while imagining the pressure to be self-induced (imagery). The pressure pain was induced on the participants left lower thigh (quadriceps femoris) using a hand-held algometer. Significant differences were found between all conditions: other and self (P < 0.001), other and imagery (P < 0.001), and self and imagery (P = 0.004). The mean pressure pain threshold for other was 521.49 kPa (SE = 38.48), for self 729.57 kPa (SE = 32.32), and for imagery 618.88 kPa (SE = 26.67). Thus, sensory attenuation did occur both in the self and the imagery condition. The results of this study may have clinical relevance for understanding the mechanisms involved in the elevated pain thresholds seen in patients with self-injury behavior and the low pain thresholds seen in patients with chronic pain conditions. Imagery of sensory attenuation might also be used to alleviate the pain experience for patients undergoing procedural pain.

Learn More >

Neuropathic pain in children: Steps towards improved recognition and management.

Neuropathic pain in children can be severe and persistent, difficult to recognise and manage, and associated with significant pain-related disability. Recognition based on clinical history and sensory descriptors is challenging in young children, and screening tools require further validation at older ages. Confirmatory tests can identify the disease or lesion of the somatosensory nervous system resulting in neuropathic pain, but feasibility and interpretation may be influenced by age- and sex-dependent changes throughout development. Quantitative sensory testing identifies specific mechanism-related sensory profiles; brain imaging is a potential biomarker of alterations in central processing and modulation of both sensory and affective components of pain; and genetic analysis can reveal known and new causes of neuropathic pain. Alongside existing patient- and parent-reported outcome measures, somatosensory system research methodologies and validation of mechanism-based standardised end-points may inform individualised therapy and stratification for clinical trials that will improve evidence-based management of neuropathic pain in children.

Learn More >

Ion Channels and Transporters in Microglial Function in Physiology and Brain Diseases.

Microglial cells interact with all components of the central nervous system (CNS) and are increasingly recognized to play essential roles during brain development, homeostasis and disease pathologies. Functions of microglia include maintaining tissue integrity, clearing cellular debris and dead neurons through the process of phagocytosis, and providing tissue repair by releasing anti-inflammatory cytokines and neurotrophic factors. Changes of microglial ionic homeostasis (Na, Ca, K, H, Cl) are important for microglial activation, including proliferation, migration, cytokine release and reactive oxygen species production, etc. These are mediated by ion channels and ion transporters in microglial cells. Here, we review the current knowledge about the role of major microglial ion channels and transporters, including several types of Ca channels (store-operated Ca entry (SOCE) channels, transient receptor potential (TRP) channels and voltage-gated Ca channels (VGCCs)) and Na channels (voltage-gated Na channels (Nav) and acid-sensing ion channels (ASICs)), K channels (inward rectifier K channels (K), voltage-gated K channels (K) and calcium-activated K channels (K)), proton channels (voltage-gated proton channel (Hv1)), and Cl channels (volume (or swelling)-regulated Cl channels (VRCCs) and chloride intracellular channels (CLICs)). In addition, ion transporter proteins such as Na/Ca exchanger (NCX), Na-K-Cl cotransporter (NKCC1), and Na/H exchanger (NHE1) are also involved in microglial function in physiology and brain diseases. We discussed microglial activation and neuroinflammation in relation to the ion channel/transporter stimulation under brain disease conditions and therapeutic aspects of targeting microglial ion channels/transporters for neurodegenerative disease, ischemic stroke, traumatic brain injury and neuropathic pain.

Learn More >

Antinociception mechanisms of action of cannabinoid-based medicine: an overview for anesthesiologists and pain physicians.

Cannabinoid-based medications possess unique multimodal analgesic mechanisms of action, modulating diverse pain targets. Cannabinoids are classified based on their origin into three categories: endocannabinoids (present endogenously in human tissues), phytocannabinoids (plant derived) and synthetic cannabinoids (pharmaceutical). Cannabinoids exert an analgesic effect, peculiarly in hyperalgesia, neuropathic pain and inflammatory states. Endocannabinoids are released on demand from postsynaptic terminals and travels retrograde to stimulate cannabinoids receptors on presynaptic terminals, inhibiting the release of excitatory neurotransmitters. Cannabinoids (endogenous and phytocannabinoids) produce analgesia by interacting with cannabinoids receptors type 1 and 2 (CB1 and CB2), as well as putative non-CB1/CB2 receptors; G protein-coupled receptor 55, and transient receptor potential vanilloid type-1. Moreover, they modulate multiple peripheral, spinal and supraspinal nociception pathways. Cannabinoids-opioids cross-modulation and synergy contribute significantly to tolerance and antinociceptive effects of cannabinoids. This narrative review evaluates cannabinoids' diverse mechanisms of action as it pertains to nociception modulation relevant to the practice of anesthesiologists and pain medicine physicians.

Learn More >

Search