I am a
Home I AM A Search Login

Accepted

Share this

Innate Receptors Expression by Lung Nociceptors: Impact on COVID-19 and Aging.

The lungs are constantly exposed to non-sterile air which carries harmful threats, such as particles and pathogens. Nonetheless, this organ is equipped with fast and efficient mechanisms to eliminate these threats from the airways as well as prevent pathogen invasion. The respiratory tract is densely innervated by sensory neurons, also known as nociceptors, which are responsible for the detection of external stimuli and initiation of physiological and immunological responses. Furthermore, expression of functional innate receptors by nociceptors have been reported; however, the influence of these receptors to the lung function and local immune response is poorly described. The COVID-19 pandemic has shown the importance of coordinated and competent pulmonary immunity for the prevention of pathogen spread as well as prevention of excessive tissue injury. New findings suggest that lung nociceptors can be a target of SARS-CoV-2 infection; what remains unclear is whether innate receptor trigger sensory neuron activation during SARS-CoV-2 infection and what is the relevance for the outcomes. Moreover, elderly individuals often present with respiratory, neurological and immunological dysfunction. Whether aging in the context of sensory nerve function and innate receptors contributes to the disorders of these systems is currently unknown. Here we discuss the expression of innate receptors by nociceptors, particularly in the lungs, and the possible impact of their activation on pulmonary immunity. We then demonstrate recent evidence that suggests lung sensory neurons as reservoirs for SARS-CoV-2 and possible viral recognition innate receptors. Lastly, we explore the mechanisms by which lung nociceptors might contribute to disturbance in respiratory and immunological responses during the aging process.

Learn More >

Effects of Synergism of Mindfulness Practice Associated With Transcranial Direct-Current Stimulation in Chronic Migraine: Pilot, Randomized, Controlled, Double-Blind Clinical Trial.

Chronic migraine is a difficult disease to diagnose, and its pathophysiology remains undefined. Its symptoms affect the quality of life and daily living tasks of the affected person, leading to momentary disability. This is a pilot, randomized, controlled, double-blind clinical trial study with female patients between 18 and 65 years old with chronic migraine. The patients underwent twelve mindfulness sessions paired with anodal transcranial direct-current stimulation (tDCS) over the left dorsolateral prefrontal cortex (DLPFC), with current intensity of 2 mA applied for 20 min, three times a week for 4 weeks. In addition, 20 min of mindfulness home practices were performed by guided meditation audio files. A total of 30 participants were evaluated after the treatment, and these were subdivided into two groups-active tDCS and sham tDCS, both set to mindfulness practice. The FFMQ-BR (Five Facet of Mindfulness Questionnaire), MIDAS (Migraine Disability Assessment), and HIT-6 (Headache Impact Test) questionnaires were used to evaluate the outcomes. After the treatment, the active mindfulness and tDCS group showed better results in all outcomes. The sham group also showed improvements, but with smaller effect sizes compared to the active group. The only significant difference in the intergroup analysis was the outcome evaluated by HIT-6 in the post treatment result. Our results provide the first therapeutic evidence of mindfulness practices associated with left DLPFC anodal tDCS with a consequent increase in the level of full attention and analgesic benefits in the clinical symptoms of patients with chronic migraine.

Learn More >

Difference in Analgesic Effects of Repetitive Transcranial Magnetic Stimulation According to the Site of Pain.

High-frequency repetitive transcranial magnetic stimulation (rTMS) of the primary motor cortex for neuropathic pain has been shown to be effective, according to systematic reviews and therapeutic guidelines. However, our large, rigorous, investigator-initiated, registration-directed clinical trial failed to show a positive primary outcome, and its subgroup analysis suggested that the analgesic effect varied according to the site of pain. The aim of this study was to investigate the differences in analgesic effects of rTMS for neuropathic pain between different pain sites by reviewing our previous clinical trials. We included three clinical trials in this mini meta-analysis: a multicenter randomized controlled trial at seven hospitals ( = 64), an investigator-initiated registration-directed clinical trial at three hospitals ( = 142), and an exploratory clinical trial examining different stimulation parameters ( = 22). The primary efficacy endpoint (change in pain scale) was extracted for each patient group with pain in the face, upper limb, or lower limb, and a meta-analysis of the efficacy of active rTMS against sham stimulation was performed. Standardized mean difference (SMD) with 95% confidence interval (CI) was calculated for pain change using a random-effects model. The analgesic effect of rTMS for upper limb pain was favorable (SMD = -0.45, 95% CI: -0.77 to -0.13). In contrast, rTMS did not produce significant pain relief on lower limb pain (SMD = 0.04, 95% CI: -0.33 to 0.41) or face (SMD = -0.24, 95% CI: -1.59 to 1.12). In conclusion, these findings suggest that rTMS provides analgesic effects in patients with neuropathic pain in the upper limb, but not in the lower limb or face, under the conditions of previous clinical trials. Owing to the main limitation of small number of studies included, many aspects should be clarified by further research and high-quality studies in these patients.

Learn More >

Neuron Type-Dependent Synaptic Activity in the Spinal Dorsal Horn of Opioid-Induced Hyperalgesia Mouse Model.

Opioids are widely used for pain relief; however, chronic opioid use causes a paradoxical state of enhanced pain sensitivity, termed "Opioid-induced hyperalgesia (OIH)." Despite the clinical importance of OIH, the detailed mechanism by which it enhances pain sensitivity remains unclear. In this study, we tested whether repeated morphine induces a neuronal circuit polarization in the mouse spinal dorsal horn (SDH). Transgenic mice expressing GFP to neurokinin 1 receptor-expressing neurons (sNK1Rn) and GABAergic interneurons (sGABAn) that received morphine [20 mg/kg, once daily for four consecutive days (i.p.)] developed mechanical hypersensitivity. Repeated morphine altered synaptic strengths in the SDH as a specific cell-type but not in a gender-dependent manner. In sNK1Rn and non-tonic firing neurons, repeated morphine treatment significantly increased frequency of spontaneous excitatory postsynaptic current (sEPSC) and evoked EPSC (eEPSC). In addition, repeated morphine treatment significantly decreased evoked inhibitory postsynaptic current (eIPSC) in sNK1Rn. Conversely, in sGABAn and tonic firing neurons, repeated morphine treatment significantly decreased sEPSC frequency and eEPSC, but had no change of eIPSC in sGABAn. Interestingly, repeated morphine treatment significantly decreased neuronal rheobase of sNK1Rn but had no effect on sGABAn. These findings suggest that spinal neuronal circuit polarization maybe the mechanism of OIH and identify a potential therapeutic mechanism to prevent or treat opioid-induced pain.

Learn More >

Impact of Galcanezumab on Total Pain Burden: A Post Hoc Analysis of a Phase 3, Randomized, Double-Blind, Placebo-Controlled Study in Patients with Episodic Cluster Headache.

In a phase 3 study, galcanezumab significantly reduced the frequency of episodic cluster headache attacks across weeks 1-3 (primary endpoint) compared with placebo. However, multiple pain dimensions may contribute to the total burden of episodic cluster headache pain. This post hoc analysis assessed the impact of galcanezumab on the total pain burden of episodic cluster headache using a composite measure.

Learn More >

Development of culturally sensitive pain neuroscience education materials for Hausa-speaking patients with chronic spinal pain: A modified Delphi study.

This study aimed to develop culturally sensitive pain neuroscience education (PNE) materials for Hausa speaking patients with chronic spinal pain (CSP). PNE is a program of teaching patients about pain that has gained considerable attention in research and is increasingly used during physical therapy for patients with chronic pain. It helps in decreasing pain, disability, fear-avoidance, pain catastrophization, movement restriction, and health care utilization among patients with chronic pain. However, existing PNE materials and their application are limited to few languages and cultural inclinations. Due to the variations in pain perceptions, beliefs, and related outcomes among different population groups, culture-sensitive PNE materials addressing these outcomes are warranted. A focus-group discussion comprising 4 experts was used to adapt and develop preliminary PNE materials. Thereafter, an internet-based 3-round modified Delphi-study involving 22 experts ensued. Experts' consensus/recommendations concerning the content were used in modifying the PNE materials. Consensus was predefined as ≥75% level of (dis)agreement. Eighteen experts completed the Delphi rounds. Nineteen, 18 and 18 experts participated in rounds 1, 2 and 3 respectively, representing 86%, 94% and 100% participation rate respectively. Consensus agreement was reached in every round and content of the materials, including drawings, examples, figures and metaphors were adapted following the experts' suggestions. We therefore concluded that, culture-sensitive PNE materials for Hausa speaking patients with CSP were successfully produced. The present study also provides a direction for further research whereby the effects of culturally-sensitive PNE materials can be piloted among Hausa speaking patients with CSP.

Learn More >

Nerve Growth Factor Enhances Tooth Mechanical Hyperalgesia Through C-C Chemokine Ligand 19 in Rats.

The nerve growth factor (NGF) plays an important role in the regulation of neuropathic pain. It has been demonstrated that calcitonin gene-related peptide (CGRP), a well-known contributor to neurogenic inflammation, increases neuroinflammatory pain induced by NGF. The inflammatory mediator that NGF most strongly induces is C-C chemokine ligand 19 (CCL19), which can recruit inflammatory cells by binding to the receptor CCR7 followed by promoting the response of neuroinflammation. However, the regulatory mechanism of NGF and CCL19 in tooth movement orofacial pain and the interaction between both are still unclear. In this study, male Sprague-Dawley rats were used to study the modulation of NGF on orofacial pain through CCL19 and the role of each in tooth movement pain in rats. The expression levels of CCL19 mRNA and protein were determined by real-time PCR and immunofluorescence, respectively. Pain levels were assessed by measuring the rats' bite force, which drops as pain rises. Meanwhile, by verifying the relationship between CGRP and CCL19, it was laterally confirmed that NGF could modulate tooth movement-induced mechanical hyperalgesia through CCL19. The results showed that the expression level of CCL19 rose with the increased NGF, and neurons expressing CGRP can express stronger CCL19. Compared with the baseline level, the bite force for all rats dropped sharply on day 1, reached its lowest level on day 3, and recovered gradually on day 5. All results indicated that NGF played an important role in tooth movement orofacial pain positively regulating CCL19 expression in the trigeminal ganglia of rats. Additionally, CCL19 increased the sensitivity to experimental tooth movement orofacial pain. NGF can regulate CCL19 expression, although it may regulate other inflammatory pathways as well. This is the first report on the interactions and modulations of tooth movement orofacial pain by NGF through CCL19 in rats.

Learn More >

Cognition and Pain: A Review.

Cognition is defined as the brain's ability to acquire, process, store, and retrieve information. Pain has been described as an unpleasant sensory or emotional experience, and for experiencing pain consciously, cognitive processing becomes imperative. Moreover, evaluation of pain strongly depends on cognition as it requires learning and recall of previous experiences. There could be a possible close link between neural systems involved in cognition and pain processing, and studies have reported an association between pain and cognitive impairment. In this narrative review, we explore the available evidence that has investigated cognitive changes associated with pain. We also examine the anatomical, biochemical, and molecular association of pain and neuro-cognition. Additionally, we focus on the cognitive impairment caused by analgesic medications. There is a need to improve our understanding of pathophysiology and cognitive impairment mechanisms associated with chronic pain and its treatment. This area provides a diverse opportunity for grounding future research, aiding institution of timely interventions to prevent chronic pain and associated cognitive decline, ultimately improving patient care.

Learn More >

Central Sensitization in Chronic Low Back Pain: A Population-Based Study of a Japanese Mountain Village.

Central sensitization (CS) is defined as the increased responsiveness of nociceptive neurons in the central nervous system to normal or subthreshold afferent input. CS has been proposed as an underlying mechanism of chronic pain in musculoskeletal disorders including low back pain (LBP). A Central Sensitization Inventory (CSI) has recently been developed for screening participants with CS. However, the association of CS with chronic LBP (cLBP) in the general population remains unknown. The purpose of this study was to investigate the association of CS with cLBP using the CSI in a population-based cohort of a Japanese mountain village.

Learn More >

Research design considerations for chronic pain prevention clinical trials: IMMPACT recommendations.

Although certain risk factors can identify individuals who are most likely to develop chronic pain, few interventions to prevent chronic pain have been identified. To facilitate the identification of preventive interventions, an IMMPACT meeting was convened to discuss research design considerations for clinical trials investigating the prevention of chronic pain. We present general design considerations for prevention trials in populations that are at relatively high risk for developing chronic pain. Specific design considerations included subject identification, timing and duration of treatment, outcomes, timing of assessment, and adjusting for risk factors in the analyses. We provide a detailed examination of 4 models of chronic pain prevention (ie, chronic postsurgical pain, postherpetic neuralgia, chronic low back pain, and painful chemotherapy-induced peripheral neuropathy). The issues discussed can, in many instances, be extrapolated to other chronic pain conditions. These examples were selected because they are representative models of primary and secondary prevention, reflect persistent pain resulting from multiple insults (ie, surgery, viral infection, injury, and toxic or noxious element exposure), and are chronically painful conditions that are treated with a range of interventions. Improvements in the design of chronic pain prevention trials could improve assay sensitivity and thus accelerate the identification of efficacious interventions. Such interventions would have the potential to reduce the prevalence of chronic pain in the population. Additionally, standardization of outcomes in prevention clinical trials will facilitate meta-analyses and systematic reviews and improve detection of preventive strategies emerging from clinical trials.

Learn More >

Search