I am a
Home I AM A Search Login

Accepted

Share this

Peripheral nociceptive mechanisms in an experimental rat model of fibromyalgia induced by repeated cold stress.

Fibromyalgia (FM) is a debilitating disease characterized by generalized and persistent musculoskeletal pain. Although central mechanisms are strongly implicated in the pathogenesis of FM, the involvement of peripheral mechanisms is poorly understood. To understand the peripheral nociceptive mechanisms, we examined muscular nociceptors in an FM model, which was made by exposing rats to repeated cold stress (RCS). A single muscle C-fiber nociceptors were identified through the teased fiber technique using ex vivo muscle-nerve preparations. Response properties of C-fibers to noxious stimuli were systematically analyzed. Messenger RNA expression of neurotrophic factors and inflammatory mediators were also studied in the muscle. In the RCS group, the mechanical response threshold of C-fibers, measured using a ramp mechanical stimulus, was significantly decreased, and the response magnitude was significantly increased in the RCS group when compared with the SHAM group, where the environmental temperature was not altered. The general characteristics of C-fibers and the responsiveness to noxious cold and heat stimuli were similar between the two groups. Messenger RNAs of neurotrophic factors and inflammatory mediators were not changed in the muscle during and after RCS. These results suggest that augmentation of the mechanical response of muscle C-fiber nociceptors contributes to hyperalgesia in the RCS model.

Learn More >

Real-world evidence on spinal cord neuromodulation and pain: Long-term effectiveness analysis in a single-center cohort.

Chronic pain inflicts damage in multiple spheres of patient's life and remains a challenge for health care providers. Real-world evidence derived from outcome registries represents a key aspect of the ongoing systematic assessment and future development of neurostimulation devices.

Learn More >

Photobiomodulation (λ=808nm) and Platelet-Rich Plasma (PRP) for the Treatment of Acute Rheumatoid Arthritis in Wistar Rats.

Rheumatoid arthritis (RA) causes inflammation, pain, edema, and articular degradation and its treatment can be based on anti-inflammatory drugs, photobiomodulation (PBM) and/or platelet-rich plasma (PRP) that can decrease cell flow and promote local healing. In the present study, we evaluate the effects of PBM and PRP on acute arthritis in Wistar rats through inflammatory and oxidative stress parameters. Thirty female Wistar rats were assigned to five groups (n=6, each group): Control, Sham, PRP, Laser, and PRP+Laser. For arthritis induction, all animals of groups Sham, PRP, Laser and PRP+Laser received an intraarticular injection of Zymosan® (200µg) in the right knee. Twenty-four hours post-arthritis induction, PRP was prepared and injected (8 × 10 of platelets) in animals of PRP and PRP+Laser groups. PBM was performed in Laser and PRP+Laser groups by single-dose therapy with the GaAlAs laser (λ=808 nm, P=25 mW, fluence=30 J/cm, beam area=0.02 mm, t=33 seconds, E=0.825 J, punctual application). After seven days of induction, serum samples were collected and thiobarbituric acid reactive substances (TBARS), nitric oxide (NO) and catalase activity were analysed. Morphological parameters were measured for inflammation areas, cartilage thickness, and C3 protein expression in knee samples. Statistical analysis was performed with an ANOVA test and Tukey's post-hoc test with a significance level of 5% (<0.05). NO was lower in the treated groups compared to the Sham group, and TBARS did not show any differences, while catalase showed greater activity between PRP+Laser versus PRP (<0.05). Inflammatory areas and cartilage thickness were lower in the treated groups compared to Sham (<0.05), while no differences in C3 protein expression was observed. PBM associated with PRP is better for anti-inflammatory and joint preservation by morphological aspects and NO levels that concern a potential clinical application.

Learn More >

Bodily Illusions and Motor Imagery in Fibromyalgia.

Fibromyalgia (FM) is characterised by chronic, continuous, widespread pain, often associated with a sense of fatigue, non-restorative sleep and physical exhaustion. Due to the nature of this condition and the absence of other neurological issues potentially able to induce disorders in body representations per se, it represents a perfect model since it provides an opportunity to study the relationship between pain and the bodily self. Corporeal illusions were investigated in 60 participants with or without a diagnosis of FM by means of an devised interview. In addition, motor imagery was investigated and illusions relating to body part movements and changes in body size, feelings of alienness, and sensations of body parts not belonging to one's own body (disownership and somatoparaphrenic-like sensations) were found. Crucially, these symptoms do not correlate with any of the clinical measures of pain or functional deficits. The results showed that motor imagery was also impaired, and the severity of the deficits found correlated with the functional impairment of the participant. This indicates that disorders in body representations and motor imagery are part of the clinical expression of FM. However, while motor imagery seems to be linked to reduced autonomy and functional deficits, bodily illusions are independent and potentially represent a concurrent symptom.

Learn More >

Review of Kyotorphin Research: A Mysterious Opioid Analgesic Dipeptide and Its Molecular, Physiological, and Pharmacological Characteristics.

Tyrosine-arginine (kyotorphin), an opioid analgesic dipeptide, was discovered more than 40 years ago in 1979. The evidence accumulated during this period has established the physiological significance of kyotorphin as a neuromodulating peptide, and pharmacological applications. Some of the following important findings have been discussed in this review: (1) kyotorphin is unevenly distributed in the brain; it is found in high concentrations in the pain pathway, which involves the regions associated with morphine analgesia; (2) kyotorphin is subcellularly localized in the synaptosome fraction or nerve-ending particles; (3) a specific synthetase generates kyotorphin from tyrosine and arginine; (4) kyotorphin may be also processed from calpastatin by a novel calcium-activated neutral protease or calpain; (5) kyotorphin preloaded into the synaptosome is released by high K depolarization in a Ca-dependent manner; (6) kyotorphin has a specific G protein coupled receptor, which mediates the activation of phospholipase C (PLC) and inhibition of adenylyl cyclase through G; (7) leucine-arginine works as a specific kyotorphin receptor antagonist; 8) membrane-bound aminopeptidase or excretion through a peptide transporter, PEPT2, may contribute to the inactivation of kyotorphin; and (9) kyotorphin causes increased Met-enkephalin release from brain and spinal slices. It is also known that the opening of plasma membrane Ca channels through a conformational coupling of the InsP receptor with the transient receptor potential C1, which is downstream of the kyotorphin receptor-mediated activation of G and PLC, could be a potential underlying mechanism of Met-enkephalin release. Considering these findings, translational research is an exciting domain that can be explored in the future. As kyotorphin is a small molecule, we could design function-added kyotorphin derivatives. These studies would include not only the brain-permeable kyotorphin derivatives but also hybrid kyotorphin derivatives conjugated with small compounds that have additional pharmacological actions. Further, since there are reports of kyotorphin being involved in either the etiology or treatment of Alzheimer's disease, epilepsy, inflammation, and chronic pain, studies on the beneficial effects of kyotorphin derivatives should also be expected in the future.

Learn More >

CGRP Regulates Nucleus Pulposus Cell Apoptosis and Inflammation via the MAPK/NF-B Signaling Pathways during Intervertebral Disc Degeneration.

Chronic low back pain (CLBP) has been proved to be the dominating cause of disability in patients with lumbar degenerative diseases. Of the various etiological factors, intervertebral disc degeneration (IVDD) has been the dominating cause. In the past few decades, the role and changes of nerve systems, especially the peripheral sensory fibers and their neurotransmitters, in the induction and progression of IVDD have attracted growing concerns. The expression of many neuropeptides, such as SP, NPY, and CGRP, in the nociceptive pathways is increased during the progression of IVDD and responsible for the discogenic pain. Here, the role of CGRP in the progression of IVDD was firstly investigated both in vitro and in vivo. Firstly, we confirmed that human degenerated intervertebral disc tissue exhibited elevated expression of CGRP and its receptor. Secondly, in vitro experiments suggested that CGRP could inhibit the proliferation and induce apoptosis in human nucleus pulposus (NP) cells, as well as promote inflammation and degenerated phenotypes through activating NF-B and MAPK signaling pathways. Thirdly, CGRP receptor antagonist, Rimegepant, can ameliorate the adverse effects of CGRP imposed on NP cells, which were confirmed in vitro and in vivo. Our results will bring about a brand-new insight into the roles of neuromodulation in IVDD and related therapeutic attempts.

Learn More >

Predictive Modelling of Susceptibility to Substance Abuse, Mortality and Drug-Drug Interactions in Opioid Patients.

Opioids are a class of drugs that are known for their use as pain relievers. They bind to opioid receptors on nerve cells in the brain and the nervous system to mitigate pain. Addiction is one of the chronic and primary adverse events of prolonged usage of opioids. They may also cause psychological disorders, muscle pain, depression, anxiety attacks etc. In this study, we present a collection of predictive models to identify patients at risk of opioid abuse and mortality by using their prescription histories. Also, we discover particularly threatening drug-drug interactions in the context of opioid usage. Using a publicly available dataset from MIMIC-III, two models were trained, Logistic Regression with L2 regularization (baseline) and Extreme Gradient Boosting (enhanced model), to classify the patients of interest into two categories based on their susceptibility to opioid abuse. We've also used K-Means clustering, an unsupervised algorithm, to explore drug-drug interactions that might be of concern. The baseline model for classifying patients susceptible to opioid abuse has an F1 score of 76.64% (accuracy 77.16%) while the enhanced model has an F1 score of 94.45% (accuracy 94.35%). These models can be used as a preliminary step towards inferring the causal effect of opioid usage and can help monitor the prescription practices to minimize the opioid abuse. Results suggest that the enhanced model provides a promising approach in preemptive identification of patients at risk for opioid abuse. By discovering and correlating the patterns contributing to opioid overdose or abuse among a variety of patients, machine learning models can be used as an efficient tool to help uncover the existing gaps and/or fraudulent practices in prescription writing. To quote an example of one such incidental finding, our study discovered that insulin might possibly be interacting with opioids in an unfavourable way leading to complications in diabetic patients. This indicates that diabetic patients under long term opioid usage might need to take increased amounts of insulin to make it more effective. This observation backs up prior research studies done on a similar aspect. To increase the translational value of our work, the predictive models and the associated software code are made available under the MIT License.

Learn More >

Treatment Disparities Among the Black Population and Their Influence on the Equitable Management of Chronic Pain.

Growing evidence suggests disparities in the prevalence, management, progression, and outcomes of chronic, nonmalignant pain-related conditions, especially for African American patients. The purpose of this review is to explore studied causative factors that influence the management of chronic pain among African Americans, including factors that result in disparate care that may contribute to unfavorable outcomes. This narrative review is based on available literature published on this topic published within the last 10 years. Assessment of chronic pain is multifaceted, often complicated by patient medical comorbidities and a complex set of biopsychosocial/spiritual/financial and legal determinants. These complexities are further exacerbated by a patient's race, by provider bias, and by structural barriers-all intersecting and culminating in disparate outcomes. A comprehensive analysis is needed to identify quality improvement interventions and to mitigate major barriers contributing to disparities in the management of chronic pain in the African American population.

Learn More >

Old Habits Die Hard: Dietary Habits of Migraine Patients Challenge our Understanding of Dietary Triggers.

Migraine is a multifactorial neurological disorder with a major metabolic facet. Dietary approaches represent a commonly implemented lifestyle modifying strategy in headache clinics, yet the precise relationship between diet and migraine is still a matter of debate. The study consisted of two parts: first, in a cross-sectional design, we compared alimentary habits of migraine subjects and a control group of healthy volunteers. For the second part, we prospectively evaluated patients' daily consumption of various potentially migraine-triggering foods over a two-month period in order to examine their possible association with the occurrence of a migraine attack. Most migraine patients reported avoiding at least one potentially migraine-triggering food/drink from their diet. In spite of that, with the sole exemption of citrus fruits, there were no statistically significant differences with respect to consumption patterns between migraine patients and controls (including wine and chocolate). Consumption frequency over time was proportional to intake of potentially migraine-triggering foods the day before a migraine attack. Our results underline the need of performing trigger challenges in order to avoid falling into an association-causation fallacy when attempting to identify possible alimentary migraine triggers. Indeed, it is possible that intake of certain foods like chocolate before attacks is a consequence of pre-attack cravings or a simple coincidence facilitated by previously established dietary habits.

Learn More >

Th2 Modulation of Transient Receptor Potential Channels: An Unmet Therapeutic Intervention for Atopic Dermatitis.

Atopic dermatitis (AD) is a multifaceted, chronic relapsing inflammatory skin disease that affects people of all ages. It is characterized by chronic eczema, constant pruritus, and severe discomfort. AD often progresses from mild annoyance to intractable pruritic inflammatory lesions associated with exacerbated skin sensitivity. The T helper-2 (Th2) response is mainly linked to the acute and subacute phase, whereas Th1 response has been associated in addition with the chronic phase. IL-17, IL-22, TSLP, and IL-31 also play a role in AD. Transient receptor potential (TRP) cation channels play a significant role in neuroinflammation, itch and pain, indicating neuroimmune circuits in AD. However, the Th2-driven cutaneous sensitization of TRP channels is underappreciated. Emerging findings suggest that critical Th2-related cytokines cause potentiation of TRP channels, thereby exaggerating inflammation and itch sensation. Evidence involves the following: (i) IL-13 enhances TRPV1 and TRPA1 transcription levels; (ii) IL-31 sensitizes TRPV1 transcriptional and channel modulation, and indirectly modulates TRPV3 in keratinocytes; (iii) The Th2-cytokine TSLP increases TRPA1 synthesis in sensory neurons. These changes could be further enhanced by other Th2 cytokines, including IL-4, IL-25, and IL-33, which are inducers for IL-13, IL-31, or TSLP in skin. Taken together, this review highlights that Th2 cytokines potentiate TRP channels through diverse mechanisms under different inflammatory and pruritic conditions, and link this effect to distinct signaling cascades in AD. This review strengthens the notion that interrupting Th2-driven modulation of TRP channels will inhibit transition from acute to chronic AD, thereby aiding the development of effective therapeutics and treatment optimization.

Learn More >

Search