I am a
Home I AM A Search Login

Accepted

Share this

Drinking Hydrogen-Rich Water Alleviates Chemotherapy-Induced Neuropathic Pain Through the Regulation of Gut Microbiota.

Chemotherapy-induced neuropathic pain (CINP) is one of the most common complications of chemotherapeutic drugs which limits the dose and duration of potentially life-saving anticancer treatment and compromises the quality of life of patients. Our previous studies have reported that molecular hydrogen (H) can be used to prevent and treat various diseases. But the underlying mechanism remains unclear. The aim of the present study was to explore the effects of hydrogen-rich water on gut microbiota in CINP.

Learn More >

Breaking down barriers to care: Understanding migraine knowledge gaps among women’s healthcare providers.

Learn More >

Altered central pain processing in fibromyalgia-A multimodal neuroimaging case-control study using arterial spin labelling.

Fibromyalgia is characterized by chronic pain and a striking discrepancy between objective signs of tissue damage and severity of pain. Function and structural alterations in brain areas involved in pain processing may explain this feature. Previous case-control studies in fibromyalgia focused on acute pain processing using experimentally-evoked pain paradigms. Yet, these studies do not allow conclusions about chronic, stimulus-independent pain. Resting-state cerebral blood flow (rsCBF) acquired by arterial spin labelling (ASL) may be a more accurate marker for chronic pain. The objective was to integrate four different functional and structural neuroimaging markers to evaluate the neural correlate of chronic, stimulus-independent pain using a resting-state paradigm. In line with the pathophysiological concept of enhanced central pain processing we hypothesized that rsCBF is increased in fibromyalgia in areas involved in processing of acute pain. We performed an age matched case-control study of 32 female fibromyalgia patients and 32 pain-free controls and calculated group differences in rsCBF, resting state functional connectivity, grey matter volume and cortical thickness using whole-brain and region of interest analyses. We adjusted all analyses for depression and anxiety. As centrally acting drugs are likely to interfere with neuroimaging markers, we performed a subgroup analysis limited to patients not taking such drugs. We found no differences between cases and controls in rsCBF of the thalamus, the basal ganglia, the insula, the somatosensory cortex, the prefrontal cortex, the anterior cingulum and supplementary motor area as brain areas previously identified to be involved in acute processing in fibromyalgia. The results remained robust across all neuroimaging markers and when limiting the study population to patients not taking centrally acting drugs and matched controls. In conclusion, we found no evidence for functional or structural alterations in brain areas involved in acute pain processing in fibromyalgia that could reflect neural correlates of chronic stimulus-independent pain.

Learn More >

Efficacy and Safety of Opioid Analgesics for the Management of Chronic Low Back Pain: An Evidence from Bayesian Network Meta-Analysis.

Chronic low back pain (CLBP) incurs huge costs owing to increased healthcare expenditure, disability, insurance, and work absenteeism. Opioid analgesics are commonly used for the management of CLBP.

Learn More >

Diagnosis of chronic primary pain in the context of structural deformity needs better definition.

Learn More >

Peripheral nociceptive mechanisms in an experimental rat model of fibromyalgia induced by repeated cold stress.

Fibromyalgia (FM) is a debilitating disease characterized by generalized and persistent musculoskeletal pain. Although central mechanisms are strongly implicated in the pathogenesis of FM, the involvement of peripheral mechanisms is poorly understood. To understand the peripheral nociceptive mechanisms, we examined muscular nociceptors in an FM model, which was made by exposing rats to repeated cold stress (RCS). A single muscle C-fiber nociceptors were identified through the teased fiber technique using ex vivo muscle-nerve preparations. Response properties of C-fibers to noxious stimuli were systematically analyzed. Messenger RNA expression of neurotrophic factors and inflammatory mediators were also studied in the muscle. In the RCS group, the mechanical response threshold of C-fibers, measured using a ramp mechanical stimulus, was significantly decreased, and the response magnitude was significantly increased in the RCS group when compared with the SHAM group, where the environmental temperature was not altered. The general characteristics of C-fibers and the responsiveness to noxious cold and heat stimuli were similar between the two groups. Messenger RNAs of neurotrophic factors and inflammatory mediators were not changed in the muscle during and after RCS. These results suggest that augmentation of the mechanical response of muscle C-fiber nociceptors contributes to hyperalgesia in the RCS model.

Learn More >

Real-world evidence on spinal cord neuromodulation and pain: Long-term effectiveness analysis in a single-center cohort.

Chronic pain inflicts damage in multiple spheres of patient's life and remains a challenge for health care providers. Real-world evidence derived from outcome registries represents a key aspect of the ongoing systematic assessment and future development of neurostimulation devices.

Learn More >

Photobiomodulation (λ=808nm) and Platelet-Rich Plasma (PRP) for the Treatment of Acute Rheumatoid Arthritis in Wistar Rats.

Rheumatoid arthritis (RA) causes inflammation, pain, edema, and articular degradation and its treatment can be based on anti-inflammatory drugs, photobiomodulation (PBM) and/or platelet-rich plasma (PRP) that can decrease cell flow and promote local healing. In the present study, we evaluate the effects of PBM and PRP on acute arthritis in Wistar rats through inflammatory and oxidative stress parameters. Thirty female Wistar rats were assigned to five groups (n=6, each group): Control, Sham, PRP, Laser, and PRP+Laser. For arthritis induction, all animals of groups Sham, PRP, Laser and PRP+Laser received an intraarticular injection of Zymosan® (200µg) in the right knee. Twenty-four hours post-arthritis induction, PRP was prepared and injected (8 × 10 of platelets) in animals of PRP and PRP+Laser groups. PBM was performed in Laser and PRP+Laser groups by single-dose therapy with the GaAlAs laser (λ=808 nm, P=25 mW, fluence=30 J/cm, beam area=0.02 mm, t=33 seconds, E=0.825 J, punctual application). After seven days of induction, serum samples were collected and thiobarbituric acid reactive substances (TBARS), nitric oxide (NO) and catalase activity were analysed. Morphological parameters were measured for inflammation areas, cartilage thickness, and C3 protein expression in knee samples. Statistical analysis was performed with an ANOVA test and Tukey's post-hoc test with a significance level of 5% (<0.05). NO was lower in the treated groups compared to the Sham group, and TBARS did not show any differences, while catalase showed greater activity between PRP+Laser versus PRP (<0.05). Inflammatory areas and cartilage thickness were lower in the treated groups compared to Sham (<0.05), while no differences in C3 protein expression was observed. PBM associated with PRP is better for anti-inflammatory and joint preservation by morphological aspects and NO levels that concern a potential clinical application.

Learn More >

Bodily Illusions and Motor Imagery in Fibromyalgia.

Fibromyalgia (FM) is characterised by chronic, continuous, widespread pain, often associated with a sense of fatigue, non-restorative sleep and physical exhaustion. Due to the nature of this condition and the absence of other neurological issues potentially able to induce disorders in body representations per se, it represents a perfect model since it provides an opportunity to study the relationship between pain and the bodily self. Corporeal illusions were investigated in 60 participants with or without a diagnosis of FM by means of an devised interview. In addition, motor imagery was investigated and illusions relating to body part movements and changes in body size, feelings of alienness, and sensations of body parts not belonging to one's own body (disownership and somatoparaphrenic-like sensations) were found. Crucially, these symptoms do not correlate with any of the clinical measures of pain or functional deficits. The results showed that motor imagery was also impaired, and the severity of the deficits found correlated with the functional impairment of the participant. This indicates that disorders in body representations and motor imagery are part of the clinical expression of FM. However, while motor imagery seems to be linked to reduced autonomy and functional deficits, bodily illusions are independent and potentially represent a concurrent symptom.

Learn More >

Review of Kyotorphin Research: A Mysterious Opioid Analgesic Dipeptide and Its Molecular, Physiological, and Pharmacological Characteristics.

Tyrosine-arginine (kyotorphin), an opioid analgesic dipeptide, was discovered more than 40 years ago in 1979. The evidence accumulated during this period has established the physiological significance of kyotorphin as a neuromodulating peptide, and pharmacological applications. Some of the following important findings have been discussed in this review: (1) kyotorphin is unevenly distributed in the brain; it is found in high concentrations in the pain pathway, which involves the regions associated with morphine analgesia; (2) kyotorphin is subcellularly localized in the synaptosome fraction or nerve-ending particles; (3) a specific synthetase generates kyotorphin from tyrosine and arginine; (4) kyotorphin may be also processed from calpastatin by a novel calcium-activated neutral protease or calpain; (5) kyotorphin preloaded into the synaptosome is released by high K depolarization in a Ca-dependent manner; (6) kyotorphin has a specific G protein coupled receptor, which mediates the activation of phospholipase C (PLC) and inhibition of adenylyl cyclase through G; (7) leucine-arginine works as a specific kyotorphin receptor antagonist; 8) membrane-bound aminopeptidase or excretion through a peptide transporter, PEPT2, may contribute to the inactivation of kyotorphin; and (9) kyotorphin causes increased Met-enkephalin release from brain and spinal slices. It is also known that the opening of plasma membrane Ca channels through a conformational coupling of the InsP receptor with the transient receptor potential C1, which is downstream of the kyotorphin receptor-mediated activation of G and PLC, could be a potential underlying mechanism of Met-enkephalin release. Considering these findings, translational research is an exciting domain that can be explored in the future. As kyotorphin is a small molecule, we could design function-added kyotorphin derivatives. These studies would include not only the brain-permeable kyotorphin derivatives but also hybrid kyotorphin derivatives conjugated with small compounds that have additional pharmacological actions. Further, since there are reports of kyotorphin being involved in either the etiology or treatment of Alzheimer's disease, epilepsy, inflammation, and chronic pain, studies on the beneficial effects of kyotorphin derivatives should also be expected in the future.

Learn More >

Search