I am a
Home I AM A Search Login

Accepted

Share this

Sphenopalatine Ganglion Nerve Block for the Treatment of Migraine Headaches in the Pediatric Population.

Persistent headaches and migraines are common in pediatrics with various treatment options. The sphenopalatine ganglion (SPG) has been identified as communicating with the parasympathetic autonomic nervous system and pain receptors. In adults, SPG block is an established treatment but there is no published literature in pediatrics.

Learn More >

GABA and glutamate in pediatric migraine.

Migraine is one of the top 5 most prevalent childhood diseases; however, effective treatment strategies for pediatric migraine are limited. For example, standard adult pharmaceutical therapies are less effective in children and can carry undesirable side effects. To develop more effective treatments, improved knowledge of the biology underlying pediatric migraine is necessary. One theory is that migraine results from an imbalance in cortical excitability. Magnetic resonance spectroscopy (MRS) studies show changes in GABA and glutamate levels (the primary inhibitory and excitatory neurotransmitters in the brain, respectively) in multiple brain regions in adults with migraine; however, they have yet to be assessed in children with migraine. Using MRS and GABA-edited MRS, we show that children (7-13 years) with migraine and aura had significantly lower glutamate levels in the visual cortex compared to controls, the opposite to results seen in adults. In addition, we found significant correlations between metabolite levels and migraine characteristics; higher GABA levels were associated with higher migraine burden. We also found that higher glutamate in the thalamus and higher GABA/Glx ratios in the sensorimotor cortex were associated with duration since diagnosis, i.e., having migraines longer. Lower GABA levels in the sensorimotor cortex were associated with being closer to their next migraine attack. Together, this indicates that GABA and glutamate disturbances occur early in migraine pathophysiology and emphasizes that evidence from adults with migraine cannot be immediately translated to pediatric sufferers. This highlights the need for further mechanistic studies of migraine in children, to aid in development of more effective treatments.

Learn More >

Differences in Gene Expression of Endogenous Opioid Peptide Precursor, Cannabinoid 1 and 2 Receptors and Interleukin Beta in Peripheral Blood Mononuclear Cells of Patients With Refractory Failed Back Surgery Syndrome Treated With Spinal Cord Stimulation:

The use of spinal cord stimulation for patients with failed back surgery syndrome (FBSS) is very common. In order to better understand the mechanisms of action of spinal cord stimulation (SCS), our aim was to determine potential changes in relative gene and protein expression in the peripheral blood mononuclear cells (PBMCs) of patients as potential biomarkers of disease outcomes and potential new targets for therapy.

Learn More >

Intraoperative epidural analgesia for pain relief after lumbar decompressive spine surgery: A systematic review and meta-analysis.

During lumbar decompressive spine surgery, the epidural space is easily accessible. This intraoperative situation allows surgeons to apply an epidural bolus of analgesia at the end of the surgical procedure. In literature, several papers about the methods and effectiveness of delivering local analgesia during lumbar decompressive spine surgery have been published.

Learn More >

Proanthocyanidins Inhibit the Transmission of Spinal Pain Information Through a Presynaptic Mechanism in a Mouse Inflammatory Pain Model.

Inflammatory pain is one of the most common symptoms of clinical pain that seriously affects patient quality of life, but it currently has limited therapeutic options. Proanthocyanidins, a group of polyphenols enriched in plants and foods, have been reported to exert anti-inflammatory pain-alleviating effects. However, the mechanism by which proanthocyanidins relieve inflammatory pain in the central nervous system is unclear. In the present study, we observed that intrathecal injection of proanthocyanidins inhibited mechanical and thermal pain sensitivity in mice with inflammatory pain induced by Complete Freund's Adjuvant (CFA) injection. Electrophysiological results further showed that proanthocyanidins inhibited the frequency of spontaneous excitatory postsynaptic currents without affecting the spontaneous inhibitory postsynaptic currents or the intrinsic properties of parabrachial nucleus-projecting neurons in the spinal cord. The effect of proanthocyanidins may be mediated by their inhibition of phosphorylated activation of the PI3K/Akt/mTOR pathway molecules in dorsal root ganglia neurons. In summary, intrathecal injection of procyanidin induces an obvious anti-inflammatory pain effect in mice by inhibiting peripheral excitatory inputs to spinal neurons that send nociceptive information to supraspinal areas.

Learn More >

Inhibitors of Human 5-Lipoxygenase Potently Interfere With Prostaglandin Transport.

5-Lipoxygenase (5-LO) is the key enzyme in the formation of pro-inflammatory leukotrienes (LT) which play an important role in a number of inflammatory diseases. Accordingly, 5-LO inhibitors are frequently used to study the role of 5-LO and LT in models of inflammation and cancer. Interestingly, the therapeutic efficacy of these inhibitors is highly variable. Here we show that the frequently used 5-LO inhibitors AA-861, BWA4C, C06, CJ-13,610 and the FDA approved compound zileuton as well as the pan-LO inhibitor nordihydroguaiaretic acid interfere with prostaglandin E (PGE) release into the supernatants of cytokine-stimulated (TNFα/IL-1β) HeLa cervix carcinoma, A549 lung cancer as well as HCA-7 colon carcinoma cells with similar potencies compared to their LT inhibitory activities (IC values ranging from 0.1-9.1 µM). In addition, AA-861, BWA4C, CJ-13,610 and zileuton concentration-dependently inhibited bacterial lipopolysaccharide triggered prostaglandin (PG) release into human whole blood. Western Blot analysis revealed that inhibition of expression of enzymes involved in PG synthesis was not part of the underlying mechanism. Also, liberation of arachidonic acid which is the substrate for PG synthesis as well as PGH and PGE formation were not impaired by the compounds. However, accumulation of intracellular PGE was found in the inhibitor treated HeLa cells suggesting inhibition of PG export as major mechanism. Further, experiments showed that the PG exporter ATP-binding cassette transporter multidrug resistance protein 4 (MRP-4) is targeted by the inhibitors and may be involved in the 5-LO inhibitor-mediated PGE inhibition. In conclusion, the pharmacological effects of a number of 5-LO inhibitors are compound-specific and involve the potent inhibition of PGE export. Results from experimental models on the role of 5-LO in inflammation and pain using 5-LO inhibitors may be misleading and their use as pharmacological tools in experimental models has to be revisited. In addition, 5-LO inhibitors may serve as new scaffolds for the development of potent prostaglandin export inhibitors.

Learn More >

A protocol for the systematic review and meta-analysis of thigmotactic behaviour in the open field test in rodent models associated with persistent pain.

Thigmotaxis is an innate predator avoidance behaviour of rodents and is enhanced when animals are under stress. It is characterised by the preference of a rodent to seek shelter, rather than expose itself to the aversive open area. The behaviour has been proposed to be a measurable construct that can address the impact of pain on rodent behaviour. This systematic review will assess whether thigmotaxis can be influenced by experimental persistent pain and attenuated by pharmacological interventions in rodents.

Learn More >

Recent Advances in the Clinical Value and Potential of Dexmedetomidine.

Dexmedetomidine, a highly selective α2-adrenoceptor agonist, has sedative, anxiolytic, analgesic, sympatholytic, and opioid-sparing properties and induces a unique sedative response which shows an easy transition from sleep to wakefulness, thus allowing a patient to be cooperative and communicative when stimulated. Recent studies indicate several emerging clinical applications via different routes. We review recent data on dexmedetomidine studies, particularly exploring the varying routes of administration, experimental implications, clinical effects, and comparative advantages over other drugs. A search was conducted on the PubMed and Web of Science libraries for recent studies using different combinations of the words "dexmedetomidine", "route of administration", and pharmacological effect. The current routes, pharmacological effects, and application categories of dexmedetomidine are presented. It functions by stimulating pre- and post-synaptic α2-adrenoreceptors within the central nervous system, leading to hyperpolarization of noradrenergic neurons, induction of an inhibitory feedback loop, and reduction of norepinephrine secretion, causing a sympatholytic effect, in addition to its anti-inflammation, sleep induction, bowel recovery, and sore throat reduction effects. Compared with similar α2-adrenoceptor agonists, dexmedetomidine has both pharmacodynamics advantage of a significantly greater α2:α1-adrenoceptor affinity ratio and a pharmacokinetic advantage of having a significantly shorter elimination half-life. In its clinical application, dexmedetomidine has been reported to present a significant number of benefits including safe sedation for various surgical interventions, improvement of intraoperative and postoperative analgesia, sedation for compromised airways without respiratory depression, nephroprotection and stability of hypotensive hemodynamics, reduction of postoperative nausea and vomiting and postoperative shivering incidence, and decrease of intraoperative blood loss. Although the clinical application of dexmedetomidine is promising, it is still limited and further research is required to enhance understanding of its pharmacological properties, patient selection, dosage, and adverse effects.

Learn More >

Neuropeptide changes in an improved migraine model with repeat stimulations.

Migraine is a medical condition with a severe recursive headache. The activation of the trigeminovascular system is an important mechanism. The neuropeptide calcitonin gene-related peptide (CGRP) plays a crucial role in the pathogenesis of migraine. Several other neuropeptides are also involved; however, their roles in migraine remain unclear. In this study, using a rat model of migraine induced by electrical stimulation of the trigeminal ganglia (TG) and an improved version induced with repeated stimulation, we observed the dynamic changes of these peptides in TG and blood. We demonstrated that the expression of CGRP, pituitary adenylate cyclase activating polypeptide (PACAP), neuropeptide Y (NPY), vasoactive intestinal peptide, and nociceptin in TG was significantly elevated and peaked at different time points after a single stimulation. Their levels in the blood plasma were significantly increased at 12 h after stimulation. The peptides were further elevated with repeated stimulation. The improved rat model of migraine with repeated stimulation of TG resulted in a more pronounced elevation of CGRP, PACAP, and NPY. Thus, the dynamic changes in neuropeptides after stimulation suggest that these neuropeptides may play an important role in the pathogenesis of migraine. Additionally, the migraine model with repetitive stimulation would be a novel model for future research.

Learn More >

Mitochondrial dysfunction and oxidative stress are involved in the mechanism of tramadol-induced renal injury.

Tramadol (TMDL) is an opioid analgesic widely administered for the management of moderate to severe pain. On the other hand, TMDL is commonly abused in many countries because of its availability and cheap cost. Renal injury is related to high dose or chronic administration of TMDL. No precise mechanism for TMDL-induced renal damage has been identified so far. The current study aimed to evaluate the potential role of oxidative stress and mitochondrial impairment in the pathogenesis of TMDL-induced renal injury. For this purpose, rats were treated with TMDL (40 and 80 ​mg/kg, i.p, 28 consecutive days). A significant increase in serum Cr and BUN was detected in TMDL groups. On the other hand, TMDL (80 ​mg/kg) caused a substantial increase in urine glucose, ALP, protein, and γ-GT levels. Moreover, urine Cr was significantly decreased in TMDL-treated rats (40 and 80 ​mg/kg). Renal histopathological alterations included inflammation, necrosis, and tubular degeneration in the kidney of TMDL-treated animals. Reactive oxygen species (ROS) formation, increased oxidized glutathione (GSSG), lipid peroxidation, and protein carbonylation was increased, whereas total antioxidant capacity and reduced glutathione levels were considerably decreased in TMDL groups. Significant mitochondrial impairment was also detected in the form of mitochondrial depolarization, adenosine-tri-phosphate (ATP) depletion, mitochondrial permeabilization, lipid peroxidation, and decreased mitochondrial dehydrogenase activity in the kidney of TMDL (80 ​mg/kg)-treated animals. These data suggest mitochondrial impairment and oxidative stress as mechanisms involved in the pathogenesis of TMDL-induced renal injury.

Learn More >

Search