I am a
Home I AM A Search Login

Accepted

Share this

Nonpeptidergic neurons suppress mast cells via glutamate to maintain skin homeostasis.

Cutaneous mast cells mediate numerous skin inflammatory processes and have anatomical and functional associations with sensory afferent neurons. We reveal that epidermal nerve endings from a subset of sensory nonpeptidergic neurons expressing MrgprD are reduced by the absence of Langerhans cells. Loss of epidermal innervation or ablation of MrgprD-expressing neurons increased expression of a mast cell gene module, including the activating receptor, Mrgprb2, resulting in increased mast cell degranulation and cutaneous inflammation in multiple disease models. Agonism of MrgprD-expressing neurons reduced expression of module genes and suppressed mast cell responses. MrgprD-expressing neurons released glutamate which was increased by MrgprD agonism. Inhibiting glutamate release or glutamate receptor binding yielded hyperresponsive mast cells with a genomic state similar to that in mice lacking MrgprD-expressing neurons. These data demonstrate that MrgprD-expressing neurons suppress mast cell hyperresponsiveness and skin inflammation via glutamate release, thereby revealing an unexpected neuroimmune mechanism maintaining cutaneous immune homeostasis.

Learn More >

GPR55 in the brain and chronic neuropathic pain.

There is a clear need for novel and improved therapeutic strategies for alleviating chronic neuropathic pain, as well as a need for better understanding of brain mechanisms of neuropathic pain, which are less understood than spinal and peripheral mechanisms. The G protein-coupled receptor 55 (GPR55), is a lysophosphatidylinositol (LPI)-sensitive receptor that has also been involved in cannabinoid signaling. It is expressed throughout the central nervous system, including the periaqueductal gray (PAG), a brainstem area and key element of the descending pain control system. Behaviors, pharmacology, biochemistry tools, and stereotaxic microinjections were used to determine if GPR55 plays a role in pain control in a chronic constriction injury (CCI) neuropathic pain model in rats. It was found that the blockade of GPR55 action in the PAG can restore and drive a descending control system to mitigate neuropathic pain. Our data demonstrate that GPR55 play a role in the descending pain control system, and identify GPR55 at supraspinal level as a neuropathic pain brain mechanism.

Learn More >

Activation of the Nrf2/HO-1 signaling pathway by dimethyl fumarate ameliorates complete Freund’s adjuvant-induced arthritis in rats.

The nuclear factor erythroid 2-related factor (Nrf2) signaling pathway has recently emerged as a novel therapeutic target in treating various diseases. Therefore, the present study aimed to assess the protective role of the Nrf2 activator, dimethyl fumarate (DMF) in the complete Freund's adjuvant (CFA)- induced arthritis model. DMF (25, 50, and 100 mg/kg) and dexamethasone (2 mg/kg) were orally administered for 14 days. Pain-related tests, paw volume, and arthritic scores were measured weekly. Serum TNF-α, IL-1β, cyclic citrullinated peptide (CCP), C-reactive protein (CRP), and rheumatoid factor (RF) levels were estimated. Nitrite, malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione (GSH), catalase (CAT), and myeloperoxidase (MPO) levels were also evaluated. NF-κB, Nrf2, HO-1, and COX-2 levels were estimated in the joint tissue. DMF treatment exerted anti-arthritic activity by enhancing the nociceptive threshold, improving arthritis scores, and reducing paw edema. Also, DMF suppressed changes in oxidative stress markers and inflammatory mediators and enhanced Nrf2 and HO-1 levels in CFA-injected rats. These findings indicate that the anti-arthritic activity of DMF may be mediated by the activation of the Nrf2/HO-1 pathway, which reduced oxidative damage and inflammation.

Learn More >

Central neuropathic pain in multiple sclerosis is associated with impaired innocuous thermal pathways and neuronal hyperexcitability.

About a third of patients with multiple sclerosis (MS) suffer from chronic and excruciating central neuropathic pain (CNP). The mechanism underlying CNP in MS is not clear, since previous studies are scarce and their results are inconsistent. Our aim was to determine whether CNP in MS is associated with impairment of the spinothalamic-thalamocortical pathways (STTCs) and/or increased excitability of the pain system.

Learn More >

Paclitaxel increases axonal localization and vesicular trafficking of Nav1.7.

The microtubule-stabilizing chemotherapy drug paclitaxel (PTX) causes dose-limiting chemotherapy-induced peripheral neuropathy (CIPN), which is often accompanied by pain. Among the multifaceted effects of PTX is an increased expression of sodium channel NaV1.7 in rat and human sensory neurons, enhancing their excitability. However, the mechanisms underlying this increased NaV1.7 expression have not been explored, and the effects of PTX treatment on the dynamics of trafficking and localization of NaV1.7 channels in sensory axons have not been possible to investigate to date. In this study we used a recently developed live-imaging approach that allows visualization of NaV1.7 surface channels and long-distance axonal vesicular transport in sensory neurons to fill this basic knowledge gap. We demonstrate concentration- and time-dependent effects of PTX on vesicular trafficking and membrane localization of NaV1.7 in real-time in sensory axons. Low concentrations of PTX increase surface channel expression and vesicular flux (number of vesicles per axon). By contrast, treatment with a higher concentration of PTX decreases vesicular flux. Interestingly, vesicular velocity is increased for both concentrations of PTX. Treatment with PTX increased levels of endogenous NaV1.7 mRNA and current density in DRG neurons. However, the current produced by transfection of DRG neurons with Halo-tag NaV1.7 was not increased after exposure to PTX. Taken together, this suggests that the increased trafficking and surface localization of Halo-NaV1.7 that we observed by live imaging in tranfected DRG neurons after treatment with PTX might be independent of an increased pool of NaV1.7 channels. After exposure to inflammatory mediators (IM) to mimic the inflammatory condition seen during chemotherapy, both NaV1.7 surface levels and vesicular transport are increased for both low and high concentrations of PTX. Overall, our results show that PTX treatment increases levels of functional endogenous NaV1.7 channels in DRG neurons and enhances trafficking and surface distribution of NaV1.7 in sensory axons, with outcomes that depend on the presence of an inflammatory milieu, providing a mechanistic explanation for increased excitability of primary afferents and pain in CIPN.

Learn More >

Effectiveness of Electroacupuncture or Auricular Acupuncture vs Usual Care for Chronic Musculoskeletal Pain Among Cancer Survivors: The PEACE Randomized Clinical Trial.

The opioid crisis creates challenges for cancer pain management. Acupuncture confers clinical benefits for chronic nonmalignant pain, but its effectiveness in cancer survivors remains uncertain.

Learn More >

The effect of spinal manipulative therapy on pain relief and function in patients with chronic low back pain: an individual participant data meta-analysis.

A 2019 review concluded that spinal manipulative therapy (SMT) results in similar benefit compared to other interventions for chronic low back pain (LBP). Compared to traditional aggregate analyses individual participant data (IPD) meta-analyses allows for a more precise estimate of the treatment effect.

Learn More >

Treatment targets of exercise for persistent non-specific low back pain: a consensus study.

Despite several hundred previous randomised controlled trials (RCTs), the key treatment targets of exercise for persistent non-specific low back pain (NSLBP) remain unclear. This study aimed to generate consensus about the key treatment targets of exercise interventions for patients with NSLBP.

Learn More >

Brainstem functional oscillations across the migraine cycle: A longitudinal investigation.

Although the mechanisms responsible for migraine initiation remain unknown, recent evidence shows that brain function is different immediately preceding a migraine. This is consistent with the idea that altered brain function, particularly in brainstem sites, may either trigger a migraine or facilitate a peripheral trigger that activates the brain, resulting in pain. The aim of this longitudinal study is therefore to expand on the above findings, and to determine if brainstem function oscillates over a migraine cycle in individual subjects. We performed resting state functional magnetic resonance imaging in three migraineurs and five controls each weekday for four weeks. We found that although resting activity variability was similar in controls and interictal migraineurs, brainstem variability increased dramatically during the 24-hour period preceding a migraine. This increase occurred in brainstem areas in which orofacial afferents terminate: the spinal trigeminal nucleus and dorsal pons. These increases were characterized by increased power at infra-slow frequencies, principally between 0.03 and 0.06 Hz. Furthermore, these power increases were associated with increased regional homogeneity, a measure of local signal coherence. The results show within-individual alterations in brain activity immediately preceding migraine onset and support the hypothesis that altered regional brainstem function before a migraine attack is involved in underlying migraine neurobiology.

Learn More >

Experimentally induced spine osteoarthritis in rats leads to neurogenic inflammation within neurosegmentally linked myotomes.

Naturally occurring spine osteoarthritis is clinically associated with the manifestation of chronic inflammatory muscle (myofascial) disease. The purpose of this study was to investigate the causal association between experimentally induced spine osteoarthritis and neurogenic inflammatory responses within neurosegmentally linked myotomes. Wistar Kyoto rats were randomly assigned to spine facet compression surgery (L4-L6) or sham surgery. Animals exposed to facet compression surgery demonstrated radiographic signs of facet-osteoarthritis (L4-L6 spinal levels) and sensory changes (allodynia, thermal hyperalgesia) at 7, 14 and 21 days post-intervention, consistent with the induction of central sensitization; no radiologic or sensory changes were observed after sham surgery. Increased levels of proinflammatory biomarkers including substance P (SP), calcitonin gene related peptide (CGRP), protease-activated receptor-2 (PAR2) and calcium/calmodulin dependent protein kinase II (CaMKII) were observed post-surgery within neurosegmentally-linked rectus femoris (L2-L5) muscle when compared to the non-segmentally linked biceps brachii (C4-C7) muscle; no differences were observed between muscles in the sham surgery group. These findings offer novel insight into the potential role of spine osteoarthritis and neurogenic inflammatory mechanisms in the pathophysiology of chronic inflammatory muscle (myofascial) disease.

Learn More >

Search