I am a
Home I AM A Search Login

Accepted

Share this

Whiplash injuries associated with experienced pain and disability can be visualized with [11C]-D-deprenyl PET/CT.

Knowledge of etiological mechanisms underlying whiplash-associated disorders (WAD) is incomplete. Localisation and quantification of peripheral musculoskeletal injury and inflammation in WAD would facilitate diagnosis, strengthen patients' subjective pain reports and aid clinical decisions, all of which could lead to improved treatment. In this longitudinal observational study we evaluated combined [11C]D-deprenyl positron emission tomography and computed tomography (PET-CT)) after acute whiplash injury and at 6 month follow-up. Sixteen adult patients (mean age 33 years) with whiplash injury grade II were recruited at the emergency department. [11C]D-deprenyl PET-CT, subjective pain levels, self-rated neck disability and active cervical range of motion were recorded within seven days after injury, and again at six month follow up. Imaging results showed possible tissue injuries after acute whiplash with an altered [11C]D-deprenyl uptake in the cervical bone structures and facet joints, associated with subjective pain locale and levels, as well as self-rated disability. At follow up, some patients had recovered, and some showed persistent symptoms, and reductions in [11C]D-deprenyl uptake correlated to reductions in pain levels. These findings help identify affected peripheral structures in whiplash injury and strengthen the idea that PET/CT detectable organic lesions in peripheral tissue are relevant for the development of persistent pain and disability in whiplash injury.

Learn More >

Mitochondrial calcium uniporter deletion prevents painful diabetic neuropathy by restoring mitochondrial morphology and dynamics.

Painful diabetic neuropathy (PDN) is an intractable complication affecting 25% of diabetic patients. PDN is characterized by neuropathic pain accompanied by dorsal root ganglion (DRG) nociceptor hyperexcitability, resulting in calcium overload, axonal degeneration, and loss of cutaneous innervation. The molecular pathways underlying these effects are unknown. Using high-throughput and deep-proteome profiling, we found that mitochondrial fission proteins were elevated in DRG neurons from mice with PDN induced by a high-fat diet (HFD). In vivo calcium imaging revealed increased calcium signaling in DRG nociceptors from mice with PDN. Furthermore, using electron microscopy, we showed that mitochondria in DRG nociceptors had fragmented morphology as early as two weeks after starting HFD, preceding the onset of mechanical allodynia and small-fiber degeneration. Moreover, preventing calcium entry into the mitochondria, by selectively deleting the mitochondrial calcium uniporter (MCU) from these neurons restored normal mitochondrial morphology, prevented axonal degeneration, and reversed mechanical allodynia in the HFD mouse model of PDN. These studies suggest a molecular cascade linking neuropathic pain to axonal degeneration in PDN. In particular, nociceptor hyperexcitability and the associated increased intracellular calcium concentrations could lead to excessive calcium entry into mitochondria mediated by the MCU, resulting in increased calcium-dependent mitochondrial fission and ultimately contributing to small-fiber degeneration and neuropathic pain in PDN. Hence, we propose that targeting calcium entry into nociceptor mitochondria may represent a promising effective and disease-modifying therapeutic approach for this currently intractable and widespread affliction. Moreover, these results are likely to inform studies of other neurodegenerative disease involving similar underlying events.

Learn More >

Can placebo and nocebo effects generalize within pain modalities and across somatosensory sensations?

Pain and other somatosensory sensations, such as itch, can be effectively decreased by placebo effects and increased by nocebo effects. There are indications that placebo effects on pain generalize to other sensations and that nocebo effects generalize within itch modalities. However, it has not yet been investigated whether learned effects can generalize within pain stimulus modalities or from pain to itch. Our aims were to test whether placebo and nocebo effects can generalize within pain modalities, i.e., from heat pain to pressure pain, and across somatosensory sensations with psychophysiological similarities, i.e., from heat pain to cowhage-evoked itch. For this purpose, sixty-five healthy participants were randomized to either a placebo or nocebo group. All participants firstly underwent a conditioning and verbal suggestion procedure with heat pain stimuli. Subsequently, responses to heat pain, pressure pain, and cowhage-evoked itch stimuli were tested. Results showed that altered levels of heat and pressure pain with the conditioned cue in both placebo and nocebo groups in the expected directions, but no significant difference in itch in both groups. In conclusion, placebo and nocebo effects on pain may generalize within but not across stimulus modalities. This study provides a novel perspective on the role that response generalization plays in physical symptoms.

Learn More >

Blocking peripheral drive from colorectal afferents by sub-kilohertz dorsal root ganglion stimulation.

Clinical evidence indicates dorsal root ganglion (DRG) stimulation effectively reduces pain without the need to evoke paresthesia. This paresthesia-free anesthesia by DRG stimulation can be promising to treat pain from the viscera, where paresthesia usually cannot be produced. Here, we explored the mechanisms and parameters for DRG stimulation using an ex vivo preparation with mouse distal colon and rectum (colorectum), pelvic nerve, L6 DRG, and dorsal root in continuity. We conducted single-fiber recordings from split dorsal root and assessed the effect of DRG stimulation on afferent neural transmission. We determined the optimal stimulus pulse width by measuring the chronaxies of DRG stimulation to be below 216 µsec, indicating spike initiation likely at attached axons rather than somata. Sub-kilohertz DRG stimulation significantly attenuates colorectal afferent transmission (10, 50, 100, 500 and 1000 Hz), of which 50 and 100 Hz show superior blocking effects. Synchronized spinal nerve and DRG stimulation reveals a progressive increase in conduction delay by DRG stimulation, suggesting activity-dependent slowing in blocked fibers. Afferents blocked by DRG stimulation show a greater increase in conduction delay than unblocked counterparts. Mid-range frequencies (50-500 Hz) are more efficient at blocking transmission than lower or higher frequencies. In addition, DRG stimulation at 50 and 100 Hz significantly attenuates in vivo visceromotor responses to noxious colorectal balloon distension. This reversible conduction block in C- and Aδ-type afferents by sub-kilohertz DRG stimulation likely underlies the paresthesia-free anesthesia by DRG stimulation, thereby offering a promising new approach for managing chronic visceral pain.

Learn More >

TREK-1 potassium channels participate in acute and long-lasting nociceptive hypersensitivity induced by formalin in rats.

TREK-1 channels are expressed in small nociceptive dorsal root ganglion (DRG) neurons where they participate in acute inflammatory and neuropathic pain. However, the role of TREK-1 in persistent pain is not well understood. The aim of this study was to investigate the local peripheral and spinal participation of TREK-1 in formalin-induced acute and long-lasting nociceptive hypersensitivity. Local peripheral or intrathecal pre-treatment with spadin, selective blocker of TREK-1, increased acute flinching behavior and secondary mechanical allodynia and hyperalgesia behavior observed 6 days after formalin injection. Local peripheral or intrathecal pre-treatment with BL-1249, selective opener of TREK-1, decreased long-lasting secondary mechanical allodynia and hyperalgesia induced by formalin. Pre-treatment with BL-1249 prevented the pro-nociceptive effect of spadin on acute nociception and long-lasting mechanical allodynia and hyperalgesia in rats. Pre-treatment with two recombinant channels that produce a high TREK-1 current, S300A and S333A (non-phosphorylated state of TREK-1), reduced formalin-induced acute pain and long-lasting mechanical allodynia and hyperalgesia. Besides, post-treatment with S300A, S333A or BL-1249 reversed long-lasting mechanical allodynia and hyperalgesia induced by formalin. Formalin increased TREK-1 expression at 1 and 6 days in DRG and dorsal spinal cord in rats, whereas that it increased c-fos expression at the DRG. Intrathecal repeated transfection of rats with S300A and S333A or injection with BL-1249 reduced formalin-induced enhanced c-fos expression. Data suggest that TREK-1 activity at peripheral and spinal sites reduces neuronal excitability in the process of acute and long-lasting nociception induced by formalin in rats.

Learn More >

A randomized double blinded placebo controlled study to evaluate motor unit abnormalities after experimentally induced sensitization using capsaicin.

Central sensitization is a condition that represents a cascade of neurological adaptations, resulting in an amplification of nociceptive responses from noxious and non-noxious stimuli. However, whether this abnormality translates into motor output and more specifically, ventral horn abnormalities, needs to be further explored. Twenty healthy participants aged 20-70 were randomly allocated to topical capsaicin or a placebo topical cream which was applied onto their left upper back to induce a transient state of sensitization. Visual analogue scale (VAS) ratings of pain intensity and brush allodynia score (BAS) were used to determine the presence of pain and secondary allodynia. Surface electromyography (sEMG) and intramuscular electromyography (iEMG) were used to record motor unit activity from the upper trapezius and infraspinatus muscles before and twenty minutes after application of capsaicin/placebo. Motor unit recruitment and variability were analyzed in the sEMG and iEMG, respectively. An independent t-test and Kruskal-Wallis H test were performed on the data. The sEMG results demonstrated a shift in the motor unit recruitment pattern in the upper trapezius muscle, while the iEMG showed a change in motor unit variability after application of capsaicin. These results suggest that capsaicin-induced central sensitization may cause changes in ventral horn excitability outside of the targeted spinal cord segment, affecting efferent pathway outputs. This preclinical evidence may provide some explanation for the influence of central sensitization on changes in movement patterns that occur in patients who have pain encouraging of further clinical investigation.Clinical Trials registration number: NCT04361149; date of registration: 24-Apr-2020.

Learn More >

Is preoperative genicular radiofrequency ablation effective for reducing pain following total knee arthroplasty? A pilot randomized clinical trial.

Although total knee arthroplasty (TKA) is an effective treatment for severe knee osteoarthritis (OA), a subset of patients experience significant postoperative pain and dissatisfaction. Several clinical trials support the analgesic benefits of genicular nerve radiofrequency ablation (GN-RFA) for non-operative knee OA, but only one prior trial has examined the effects of this intervention given preoperatively on postoperative outcomes following TKA, showing no analgesic benefit of cooled GN-RFA. The current study evaluated whether conventional thermal GN-RFA performed preoperatively resulted in significant improvements in pain and function following TKA.

Learn More >

Consensus recommendations on dosing and administration of medical cannabis to treat chronic pain: results of a modified Delphi process.

Globally, medical cannabis legalization has increased in recent years and medical cannabis is commonly used to treat chronic pain. However, there are few randomized control trials studying medical cannabis indicating expert guidance on how to dose and administer medical cannabis safely and effectively is needed.

Learn More >

Association of Chronic Pain With Participation in Motor Skill Activities in Children With Cerebral Palsy.

Learn More >

MrgprdCre lineage neurons mediate optogenetic allodynia through an emergent polysynaptic circuit.

Most cutaneous C fibers, including both peptidergic and nonpeptidergic subtypes, are presumed to be nociceptors and respond to noxious input in a graded manner. However, mechanically sensitive, nonpeptidergic C fibers also respond to mechanical input in the innocuous range, so the degree to which they contribute to nociception remains unclear. To address this gap, we investigated the function of nonpeptidergic afferents using the MrgprdCre allele. In real-time place aversion studies, we found that low-frequency optogenetic activation of MrgrpdCre lineage neurons was not aversive in naive mice but became aversive after spared nerve injury (SNI). To address the underlying mechanisms of this allodynia, we recorded responses from lamina I spinoparabrachial (SPB) neurons using the semi-intact ex vivo preparation. After SNI, innocuous brushing of the skin gave rise to abnormal activity in lamina I SPB neurons, consisting of an increase in the proportion of recorded neurons that responded with excitatory postsynaptic potentials or action potentials. This increase was likely due, at least in part, to an increase in the proportion of lamina I SPB neurons that received input on optogenetic activation of MrgprdCre lineage neurons. Intriguingly, in SPB neurons, there was a significant increase in the excitatory postsynaptic current latency from MrgprdCre lineage input after SNI, consistent with the possibility that the greater activation post-SNI could be due to the recruitment of a new polysynaptic circuit. Together, our findings suggest that MrgprdCre lineage neurons can provide mechanical input to the dorsal horn that is nonnoxious before injury but becomes noxious afterwards because of the engagement of a previously silent polysynaptic circuit in the dorsal horn.

Learn More >

Search