I am a
Home I AM A Search Login

Accepted

Share this

HIV Neuropathy-a Review of Mechanisms, Diagnosis, and Treatment of Pain.

This article is a systematic review of data from 2018 to 2020 regarding information from publications on epidemiologic, diagnostic, and therapeutic advancements in human immunodeficiency virus-associated peripheral neuropathy.

Learn More >

Pain Experience in Pancreatitis: Strong Association of Genetic Risk Loci for Anxiety and PTSD in Patients With Severe, Constant, and Constant-Severe Pain.

Recurrent acute pancreatitis (RAP) and chronic pancreatitis (CP) are progressive inflammatory syndromes with variable features. Pain is the primary feature that contributes to low physical and mental quality of life with a third of patients reporting severe pain. Pain experience is worsened by depression. Here, we tested the hypothesis that genetic risk of the psychiatric conditions of anxiety and post-traumatic stress disorder (PTSD) is associated with pain in CP and RAP + CP subjects.

Learn More >

Propionamide Derivatives as Dual μ-Opioid Receptor Agonists and σ Receptor Antagonists for the Treatment of Pain.

A new series of propionamide derivatives was developed as dual μ-opioid receptor agonists and σ receptor antagonists. Modification of a high-throughput screening hit originated a series of piperazinylcycloalkylmethyl propionamides, which were explored to overcome the challenge of achieving balanced dual activity and convenient drug-like properties. The lead compound identified, , showed good analgesic effects in several animal models of both acute (paw pressure) and chronic (partial sciatic nerve ligation) pain, with reduced gastrointestinal effects in comparison with oxycodone.

Learn More >

A Cross-Sectional Web Survey of Satisfaction with Treatment for Pain in Participants with Suspected Diabetic Peripheral Neuropathic Pain in Both Feet.

Diabetic peripheral neuropathic pain (DPNP), a symptom of diabetic polyneuropathy (DPN), is underdiagnosed in people with diabetes. To date, no studies have determined the relationship between diagnosis of DPN and satisfaction with treatment for pain. Additionally, the factors that influence satisfaction with treatment for pain remain unknown. This questionnaire study was conducted to understand satisfaction with treatment for pain among participants with diabetes who experienced bilateral pain or numbness in their feet.

Learn More >

Direct verbal suggestibility as a predictor of placebo hypoalgesia responsiveness.

Reliably identifying good placebo responders has pronounced implications for basic research on, and clinical applications of, the placebo response. Multiple studies point to direct verbal suggestibility as a potentially valuable predictor of individual differences in placebo responsiveness, but previous research has produced conflicting results on this association.

Learn More >

The relationship between pain severity, insomnia, and suicide attempts among a national veteran sample initiating pain care.

We assessed the longitudinal association of suicide attempts by moderate to severe pain and insomnia prior to and following the initiation of pain services among veterans.

Learn More >

α2δ-1 Upregulation in Primary Sensory Neurons Promotes NMDA Receptor-Mediated Glutamatergic Input in Resiniferatoxin-Induced Neuropathy.

Systemic treatment with resiniferatoxin (RTX) induces small-fiber sensory neuropathy by damaging TRPV1-expressing primary sensory neurons and causes distinct thermal sensory impairment and tactile allodynia, which resemble the unique clinical features of postherpetic neuralgia. However, the synaptic plasticity associated with RTX-induced tactile allodynia remains unknown. In this study, we found that RTX-induced neuropathy is associated with α2δ-1 upregulation in the dorsal root ganglion (DRG) and increased physical interaction between α2δ-1 and GluN1 in the spinal cord synaptosomes. RNAscope hybridization showed that RTX treatment significantly increased α2δ-1 expression in DRG neurons labeled with calcitonin gene-related peptide, isolectin B4, NF200, and tyrosine hydroxylase. Electrophysiological recordings revealed that RTX treatment augmented the frequency of miniature excitatory postsynaptic currents (mEPSCs) and the amplitude of evoked EPSCs in spinal dorsal horn neurons, and these effects were reversed by blocking NMDA receptors with AP-5. Inhibiting α2δ-1 with gabapentin, genetically ablating α2δ-1, or targeting α2δ-1-bound NMDA receptors with α2δ-1Tat peptide largely normalized the baseline frequency of mEPSCs and the amplitude of evoked EPSCs potentiated by RTX treatment. Furthermore, systemic treatment with memantine or gabapentin and intrathecal injection of AP-5 or Tat-fused α2δ-1 C terminus peptide reversed allodynia in RTX-treated rats and mice. In addition, RTX-induced tactile allodynia was attenuated in α2δ-1 knock-out mice and in mice in which GluN1 was conditionally knocked out in DRG neurons. Collectively, our findings indicate that α2δ-1-bound NMDA receptors at presynaptic terminals of sprouting myelinated afferent nerves contribute to RTX-induced potentiation of nociceptive input to the spinal cord and tactile allodynia. Postherpetic neuralgia (PHN), associated with shingles, is a distinct form of neuropathic pain commonly seen in elderly and immunocompromised patients. The synaptic plasticity underlying touch-induced pain hypersensitivity in PHN remains unclear. Using a nonviral animal model of PHN, we found that glutamatergic input from primary sensory nerves to the spinal cord is increased via tonic activation of glutamate NMDA receptors. Also, we showed that α2δ-1 (encoded by ), originally considered a calcium channel subunit, serves as an auxiliary protein that promotes activation of presynaptic NMDA receptors and pain hypersensitivity. This new information advances our understanding of the molecular mechanism underlying PHN and suggests new strategies for treating this painful condition.

Learn More >

Anti-calcitonin gene-related peptide antibody attenuates orofacial mechanical and heat hypersensitivities induced by infraorbital nerve injury.

Currently, limited information regarding the role of calcitonin gene-related peptide (CGRP) in neuropathic pain is available. Intracerebroventricular administrations of an anti-CGRP antibody were performed in rats with infraorbital nerve ligation. Anti-CGRP antibody administration attenuated mechanical and heat hypersensitivities induced by nerve ligation and decreased the phosphorylated extracellular signal-regulated kinase expression levels in the trigeminal spinal subnucleus caudalis (Vc) following mechanical or heat stimulation. An increased CGRP immunoreactivity in the Vc appeared after nerve ligation. A decreased CGRP immunoreactivity resulted from anti-CGRP antibody administration. Our findings suggest that anti-CGRP antibody administration attenuates the symptoms of trigeminal neuropathic pain by acting on CGRP in the Vc.

Learn More >

Downregulated SIRT1 in the CeA is involved in chronic pain-depression comorbidity.

Comorbid chronic pain and depression are increasingly becoming a concerning public problem, but the underlying mechanisms remain unclear. Here, we demonstrate that pain-related depression-like behaviors are induced in a rat model of chronic constriction injury (CCI). Using this model, we found that chronic neuropathic pain decreased the activity and expression of sirtuin 1 (SIRT1, an NAD-dependent deacetylase) in the central nucleus of the amygdala (CeA). In addition, the pharmacologic activation of SIRT1 in the CeA could alleviate the depression-like behaviors associated with chronic pain while relieving sensory pain. Accordingly, adeno-associated virus (AAV)-mediated SIRT1 overexpression in the CeA produced a positive effect on the easement of chronic pain and comorbid depression. Taken together, these findings highlight the role of SIRT1 in the CeA in chronic pain and depression states and reveal that the upregulation of SIRT1 may be a potential therapy for the treatment of pain-depression comorbidities.

Learn More >

Structure of human Ca2.2 channel blocked by the painkiller ziconotide.

The neuronal-type (N-type) voltage-gated calcium (Ca) channels, which are designated Ca2.2, have an important role in the release of neurotransmitters. Ziconotide is a Ca2.2-specific peptide pore blocker that has been clinically used for treating intractable pain. Here we present cryo-electron microscopy structures of human Ca2.2 (comprising the core α1 and the ancillary α2δ-1 and β3 subunits) in the presence or absence of ziconotide. Ziconotide is thoroughly coordinated by helices P1 and P2, which support the selectivity filter, and the extracellular loops (ECLs) in repeats II, III and IV of α1. To accommodate ziconotide, the ECL of repeat III and α2δ-1 have to tilt upward concertedly. Three of the voltage-sensing domains (VSDs) are in a depolarized state, whereas the VSD of repeat II exhibits a down conformation that is stabilized by Ca2-unique intracellular segments and a phosphatidylinositol 4,5-bisphosphate molecule. Our studies reveal the molecular basis for Ca2.2-specific pore blocking by ziconotide and establish the framework for investigating electromechanical coupling in Ca channels.

Learn More >

Search