I am a
Home I AM A Search Login

Accepted

Share this

Is There a Difference in Fear-Avoidance, Beliefs, Anxiety and Depression Between Post-Surgery and Non-Surgical Persistent Spinal Pain Syndrome Patients?

Patients with post-surgery persistent spinal pain syndrome (PSPS) or non-surgical PSPS might be affected by sustained fear-avoidance beliefs (FAB), anxiety and depression. In this scenario, this study aimed to describe those aspects in patients with post-surgery PSPS and non-surgical PSPS.

Learn More >

Managing Atopic Dermatitis with Lebrikizumab – The Evidence to Date.

Atopic dermatitis is a prevalent, inflammatory skin disease that presents with an eczematous, itchy rash. As of late, there have been many emerging monoclonal antibody inhibitor and small molecule therapies that have changed the course of eczema treatment. One of the treatments in the pipeline for atopic dermatitis is interleukin 13 monoclonal antibody inhibitor, lebrikizumab. As interleukin 13 has been identified as a pro-inflammatory cytokine in the immunological cascade of eczema, it is thought that lebrikizumab can be a great treatment choice for patients with atopic dermatitis. Lebrikizumab is currently being investigated in several studies. Thus far, lebrikizumab for the treatment of eczema has been found to be efficacious; in particular, a rapid response of pruritus improvement has been demonstrated in as early as 2 days. Additionally, it is well tolerated and has an acceptable safety profile, with reports suggesting that are decreased risks of infection when compared to dupilumab. In this review, we aim to summarize the current understanding of lebrikizumab in terms of the mechanism of action, preclinical pharmacology, pharmacokinetics and metabolism, efficacy and safety, and drug indications.

Learn More >

Multifunctional injectable hydrogel for effective promotion of cartilage regeneration and protection against osteoarthritis: combined chondroinductive, antioxidative and anti-inflammatory strategy.

The regeneration of the articular cartilage defects is characterized by the improvement in the quality of the repaired tissue and the reduction in the potential development of perifocal osteoarthritis (OA). Usually, the injection of dexamethasone (Dex) in the OA joints slows down the progression of inflammation and relieves pain. However, the anti-inflammatory Dex injected in the joint cavity is rapidly cleared, leading to a poor therapeutic effect. Multifunctional hydrogels with simultaneous chondrogenic differentiation, antioxidative, and anti-inflammatory capacities may represent a promising solution. Therefore, in this work, a novel injectable hydrogel based on double cross-linking of Schiff base bonds and coordination of catechol-Fe was developed. The obtained hydrogel (Gel-DA/DOHA/DMON@Dex@Fe) possessed molding performance in situ, excellent mechanical strength, controllable biodegradability, the on-demand release of the drug, and biocompatibility. The hydrogel system stimulated the HIF-1α signaling pathway and suppressed inflammation thanks to the introduction of DMON@Fe, consequently facilitating chondrogenic differentiation. The synergistic anti-inflammatory effect together with the induction of chondrogenesis by Dex-loaded Gel-DA/DOHA/DMON@Fe hydrogel allowed the promotion of cartilage repair, as demonstrated by experiments. Hence, the proposed multifunctional scaffold provides a promising advancement in articular cartilage tissue engineering and may have great prospects in the prevention of OA.

Learn More >

The Development of Mechanical Allodynia in Diabetic Rats Revealed by Single-Cell RNA-Seq.

Mechanical allodynia (MA) is the main reason that patients with diabetic peripheral neuropathy (DPN) seek medical advice. It severely debilitates the quality of life. Investigating hyperglycemia-induced changes in neural transcription could provide fundamental insights into the complex pathogenesis of painful DPN (PDPN). Gene expression profiles of physiological dorsal root ganglia (DRG) have been studied. However, the transcriptomic changes in DRG neurons in PDPN remain largely unexplored. In this study, by single-cell RNA sequencing on dissociated rat DRG, we identified five physiological neuron types and a novel neuron type MAAC ( ) in PDPN. The novel neuron type originated from peptidergic neuron cluster and was characterized by highly expressing genes related to neurofilament and cytoskeleton. Based on the inferred gene regulatory networks, we found that activated transcription factors and in MAAC could enhance expression. Moreover, we constructed the cellular communication network of MAAC and revealed its receptor-ligand pairs for transmitting signals with other cells. Our molecular investigation at single-cell resolution advances the understanding of the dynamic peripheral neuron changes and underlying molecular mechanisms during the development of PDPN.

Learn More >

Transcriptomic Analysis of Trigeminal Ganglion and Spinal Trigeminal Nucleus Caudalis in Mice with Inflammatory Temporomandibular Joint Pain.

Persistent facial pain heavily impacts the quality of life in patients with temporomandibular joint (TMJ) disorders. Previous studies have demonstrated that long non-coding ribonucleic acid (lncRNA) is an important regulator of pain. In this study, we aimed to analyze lncRNA expression in the whole transcriptome of trigeminal ganglia (TG) and spinal trigeminal nucleus caudalis (Sp5C) in a chronic inflammatory TMJ pain mouse model.

Learn More >

Brain Functional Alteration at Different Stages of Neuropathic Pain With Allodynia and Emotional Disorders.

Neuropathic pain (NeuP), a challenging medical condition, has been suggested by neuroimaging studies to be associated with abnormalities of neural activities in some brain regions. However, aberrancies in brain functional alterations underlying the sensory-discriminative abnormalities and negative emotions in the setting of NeuP remain unexplored. Here, we aimed to investigate the functional alterations in neural activity relevant to pain as well as pain-related depressive-like and anxiety-like behaviors in NeuP by combining amplitude of low frequency fluctuation (ALFF) and degree centrality (DC) analyses methods based on resting-state functional magnetic resonance imaging (rs-fMRI). A rat model of NeuP was established chronic constriction injury (CCI) of the sciatic nerve. Results revealed that the robust mechanical allodynia occurred early and persisted throughout the entire observational period. Depressive and anxiety-like behaviors did not appear until 4 weeks after injury. When the maximum allodynia was apparent early, CCI rats exhibited decreased ALFF and DC values in the left somatosensory and nucleus accumbens shell (ACbSh), respectively, as compared with sham rats. Both values were significantly positively correlated with mechanical withdrawal thresholds (MWT). At 4 weeks post-CCI, negative emotional states were apparent and CCI rats were noted to exhibit increased ALFF values in the left somatosensory and medial prefrontal cortex (mPFC) as well as increased DC values in the right motor cortex, as compared with sham rats. At 4 weeks post-CCI, ALFF values in the left somatosensory cortex and DC values in the right motor cortex were noted to negatively correlate with MWT and exhibition of anxiety-like behavior on an open-field test (OFT); values were found to positively correlate with the exhibition of depressive-like behavior on forced swimming test (FST). The mPFC ALFF values were found to negatively correlate with the exhibition of anxiety-like behavior on OFT and positively correlate with the exhibition of depressive-like behavior on FST. Our findings detail characteristic alterations of neural activity patterns induced by chronic NeuP and underscore the important role of the left somatosensory cortex, as well as its related networks, in the mediation of subsequent emotional dysregulation due to NeuP.

Learn More >

Machine prescription for chronic migraine.

Responsive to treatment individually, chronic migraine remains strikingly resistant collectively, incurring the second-highest population burden of disability worldwide. A heterogeneity of responsiveness, requiring prolonged-currently heuristic-individual evaluation of available treatments, may reflect a diversity of causal mechanisms, or the failure to identify the most important, single causal factor. Distinguishing between these possibilities, now possible through the application of complex modelling to large-scale data, is critical to determine the optimal approach to identify new interventions in migraine and making the best use of existing ones. Examining a richly phenotyped cohort of 1446 consecutive unselected patients with chronic migraine, here we use causal multitask Gaussian process models to estimate individual treatment effects across 10 classes of preventatives. Such modelling enables us to quantify the accessibility of heterogeneous responsiveness to high-dimensional modelling, to infer the likely scale of the underlying causal diversity. We calculate the treatment effects in the overall population, and the conditional treatment effects among those modelled to respond and compare the true response rates between these two groups. Identifying a difference in response rates between the groups supports a diversity of causal mechanisms. Moreover, we propose a data-driven machine prescription policy, estimating the time-to-response when sequentially trialling preventatives by individualized treatment effects and comparing it to expert guideline sequences. All model performances are quantified out-of-sample. We identify significantly higher true response rates among individuals modelled to respond, compared with the overall population (mean difference of 0.034; 95% confidence interval 0.003-0.065;  = 0.033), supporting significant heterogeneity of responsiveness and diverse causal mechanisms. The machine prescription policy yields an estimated 35% reduction in time-to-response (3.750 months; 95% confidence interval 3.507-3.993;  < 0.0001) compared with expert guidelines, with no substantive increase in expense per patient. We conclude that the highly distributed mode of causation in chronic migraine necessitates high-dimensional modelling for optimal management. Machine prescription should be considered an essential clinical decision-support tool in the future management of chronic migraine.

Learn More >

S-Ketamine Pretreatment Alleviates Anxiety-Like Behaviors and Mechanical Allodynia and Blocks the Pro-inflammatory Response in Striatum and Periaqueductal Gray From a Post-traumatic Stress Disorder Model.

This study aims to explore the regulatory effect of S-ketamine on the mechanical allodynia, anxiety-like behaviors and microglia activation in adult male rats exposed to an animal model of post-traumatic stress disorder (PTSD). The rat PTSD model was established by the exposure to single-prolonged stress (SPS), and 1 day later, rats were intraperitoneally injected with 5 mg/kg S-ketamine or normal saline, respectively. Paw withdrawal mechanical threshold was measured 2 days before, and 1, 3, 5, 7, 10, 14, 21 and 28 days after injection to assess mechanical allodynia in the SPS-exposed rats. For anxiety-like behaviors, the open field test and elevated plus maze test were performed at 7 and 14 days after S-ketamine treatment in the SPS-exposed rats, respectively. SPS-induced rats presented pronounced mechanical allodynia and anxiety-like behaviors, which were alleviated by S-ketamine treatment. After behavioral tests, rats were sacrificed for collecting the anterior cingulate cortex (ACC), prefrontal cortex (PFC), dorsal striatum, and periaqueductal gray (PAG). Protein levels of TNF-α, IL-1β, p-NF-κB, and NF-κB in brain regions were examined by Western blot. In addition, microglia activation in each brain region was determined by immunofluorescence staining of the microglia-specific biomarker Iba-1. Interestingly, pro-inflammatory cytokines were significantly upregulated in the dorsal striatum and PAG, rather than ACC and PFC. Activated microglia was observed in the dorsal striatum and PAG as well, and upregulated p-NF-κB was detected in the dorsal striatum. Inflammatory response, phosphorylation of NF-κB and microglia activation in certain brain regions were significantly alleviated by S-ketamine treatment. Collectively, S-ketamine is a promising drug in alleviating mechanical allodynia, anxiety-like behaviors, and pro-inflammatory responses in discrete brain regions in a model of PTSD.

Learn More >

Red Nucleus Interleukin-6 Evokes Tactile Allodynia in Male Rats Through Modulating Spinal Pro-inflammatory and Anti-inflammatory Cytokines.

Our previous studies have clarified that red nucleus (RN) interleukin (IL)-6 is involved in the maintenance of neuropathic pain and produces a facilitatory effect by activating JAK2/STAT3 and ERK pathways. In this study, we further explored the immune molecular mechanisms of rubral IL-6-mediated descending facilitation at the spinal cord level. IL-6-evoked tactile allodynia was established by injecting recombinant IL-6 into the unilateral RN of naive male rats. Following intrarubral administration of IL-6, obvious tactile allodynia was evoked in the contralateral hindpaw of rats. Meanwhile, the expressions of pro-inflammatory cytokines tumor necrosis factor-α (TNF-α), IL-1β, and IL-6 were elevated in the contralateral spinal dorsal horn (L4-L6), blocking spinal TNF-α, IL-1β, or IL-6 with neutralizing antibodies relieved IL-6-evoked tactile allodynia. Conversely, the levels of anti-inflammatory cytokines transforming growth factor-β (TGF-β) and IL-10 were reduced in the contralateral spinal dorsal horn (L4-L6), an intrathecal supplement of exogenous TGF-β, or IL-10 attenuated IL-6-evoked tactile allodynia. Further studies demonstrated that intrarubral pretreatment with JAK2/STAT3 inhibitor AG490 suppressed the elevations of spinal TNF-α, IL-1β, and IL-6 and promoted the expressions of TGF-β and IL-10 in IL-6-evoked tactile allodynia rats. However, intrarubral pretreatment with ERK inhibitor PD98059 only restrained the increase in spinal TNF-α and enhanced the expression of spinal IL-10. These findings imply that rubral IL-6 plays descending facilitation and produces algesic effect through upregulating the expressions of spinal pro-inflammatory cytokines TNF-α, IL-1β, and IL-6 and downregulating the expressions of spinal anti-inflammatory cytokines TGF-β and IL-10 by activating JAK2/STAT3 and/or ERK pathways, which provides potential therapeutic targets for the treatment of pathological pain.

Learn More >

Preventive Supplementation of Omega-3 Reduces Pain and Pro-inflammatory Cytokines in a Mouse Model of Complex Regional Pain Syndrome Type I.

Complex regional pain syndrome type I (CRPS-I) is a condition that responds poorly to treatments. The role of omega-3 fatty acids in the treatment of inflammatory disorders is well described in the literature; however, few studies have evaluated its therapeutic benefits in different types of pain. We evaluated the potential antihyperalgesic and anti-inflammatory effects of preventive omega-3 supplementation in an animal model of CRPS-I. In experiment 1, Swiss female mice were supplemented for 30 days with omega-3 before the induction of the CRPS-I model and 14 days after. Mechanical hyperalgesia was evaluated at baseline and from the 4th to the 14th day after CPRS-I induction along with open field locomotor activity after 30 days of supplementation. In experiment 2, Swiss female mice were supplemented for 30 days with omega-3 and then subjected to the CRPS-I model. Twenty-four hours later the animals were euthanized, and tissue samples of the spinal cord and right posterior paw muscle were taken to measure pro-inflammatory cytokine TNF and IL-1β concentrations. Omega-3 supplementation produced antihyperalgesic and anti-inflammatory effects, as well as reducing pro-inflammatory cytokine concentrations, without altering the animals' locomotion. No open field locomotor changes were found. The 30-day supplementation at the tested dose was effective in the CRPS-I model.

Learn More >

Search