I am a
Home I AM A Search Login

Accepted

Share this

Multivariate Pattern Analysis in Identifying Neuropathic Pain Following Brachial Plexus Avulsion Injury: A PET/CT Study.

Neuropathic pain following brachial plexus avulsion injury (BPAI) induces plastic changes in multiple brain regions associated with somatosensory function, pain, or cognition at the group level. The alternation of the whole pattern of resting-state brain activity and the feasibility of a brain imaging, information-based diagnosis of pain following BPAI is poorly investigated.

Learn More >

Dual Sigma-1 receptor antagonists and hydrogen sulfide-releasing compounds for pain treatment: Design, synthesis, and pharmacological evaluation.

The development of σ receptor antagonists hybridized with a HS-donor is here reported. We aimed to obtain improved analgesic effects when compared to σ receptor antagonists or HS-donors alone. In an in vivo model of sensory hypersensitivity, thioamide 1a induced analgesia which was synergistically enhanced when associated with the σ receptor antagonist BD-1063. The selective σ receptor agonist PRE-084 completely reversed this effect. Four thioamide HS-σ receptor hybrids (5a-8a) and their amide derivatives (5b-8b) were synthesized. Compound 7a (AD164) robustly released HS and showed selectivity for σ receptor over σ and opioid receptors. This compound induced marked analgesia that was reversed by PRE-084. The amide analogue 7b (AD163) showed only minimal analgesia. Further studies showed that 7a exhibited negligible acute toxicity, together with a favorable pharmacokinetic profile. To the best of our knowledge, compound 7a is the first dual-acting ligand with simultaneous HS-release and σ antagonistic activities.

Learn More >

Inflammatory Biomarker Levels After Propofol or Sevoflurane Anesthesia: A Meta-analysis.

The perioperative inflammatory response may be implicated in adverse outcomes including neurocognitive dysfunction and cancer recurrence after oncological surgery. The immunomodulatory role of anesthetic agents has been demonstrated in vitro; however, its clinical relevance is unclear. The purpose of this meta-analysis was to compare propofol and sevoflurane with respect to biomarkers of perioperative inflammation. The secondary aim was to correlate markers of inflammation with clinical measures of perioperative cognition.

Learn More >

Selective stimulation of nociceptive small fibers during intraepidermal electrical stimulation: Experiment and computational analysis.

Electrical stimulation of skin nociceptors is gaining attention in pain research and peripheral neuropathy diagnosis. However, the optimal parameters for selective stimulation are still difficult to determine because they require simultaneous characterization of the electrical response of small fibers (Aδ- and C-fibers). In this study, we measured the electrical threshold responses of small fibers to train-pulse stimulation in humans for the first time. We also examined selective stimulation a computational model, which combines electrical analysis, and terminal fiber and synaptic models, including the first cutaneous pain C-fiber model. Selective stimulation of small fibers is performed by injecting train-pulse stimulation coaxial electrodes with an intraepidermal needle tip at varying pulse counts and frequencies. The activation Aδ- or C-fibers was discriminated from the differences in reaction time. Aδ-fiber elicited a pinpricking sensation with a mean reaction time of 0.522 s, and C-fiber elicited a tingling sensation or slight burning itch with a mean reaction time of 1.243 s. The implemented multiscale electrical model investigates synaptic effects while considering stimulation waveform characteristics. Experimental results showed that perception thresholds decreased with the number of consecutive pulses and frequency up to convergence (five pulses or 70 Hz) during the selective stimulation of Aδ- and C-fibers. Considering the synaptic properties, the optimal stimulus conditions for selective stimulation of Aδ- vs. C-fibers were train of at least four pulses and a frequency of 40-70 Hz at a pulse width of 1 ms. The experimental results were modeled with high fidelity by incorporating temporal synaptic effects into the computational model. Numerical analysis revealed terminal axon thickness to be the most important biophysical factor affecting threshold variability. The computational model can be used to estimate perception thresholds while understanding the mechanisms underlying the selective stimulation of small fibers. The parameters derived here are important in exploring selective stimulation between Aδ- and C-fibers for diagnosing neuropathies.

Learn More >

Adaptation and validation of the Chinese version of the Central Sensitisation Inventory in patients with chronic pain.

The 25-item Central Sensitisation Inventory (CSI-25) is a patient-reported instrument used to screen patients at risk of central sensitisation, a pathophysiological mechanism implicated in many chronic pain syndromes.

Learn More >

New insights into the analgesic properties of the XCL1/XCR1 and XCL1/ITGA9 axes modulation under neuropathic pain conditions – evidence from animal studies.

Recent studies have indicated the involvement of chemokine-C-motif ligand 1 (XCL1) in nociceptive transmission; however, the participation of its two receptors, canonical chemokine-C-motif receptor 1 (XCR1) and integrin alpha-9 (ITGA9), recently recognized as a second receptor, has not been clarified to date. The aim was to explore by which of these receptors XCL1 reveals its pronociceptive properties and how the XCL1-XCR1 and XCL1-ITGA9 axes blockade/neutralization influence on pain-related behavior and opioid analgesia in the model of neuropathic pain. In our studies we used Albino Swiss mice which were exposed to the unilateral sciatic nerve chronic constriction injury (CCI) as a neuropathic pain model. Animals received single intrathecal () injection of XCL1, XCL1 neutralizing antibodies, antagonist of XCR1 (vMIP-II) and neutralizing antibodies of ITGA9 (YA4), using lumbar puncture technique. Additionally we performed co-administration of abovementioned neutralizing antibodies and antagonists with single dose of morphine/buprenorphine. To assess pain-related behavior the von Frey and cold plate tests were used. To measure mRNA and protein level the RT-qPCR and Western Blot/Elisa/immunofluorescence techniques were performed, respectively. Statistical analysis was conducted using ANOVA with a Bonferroni correction. Presented studies have shown time-dependent upregulation of the mRNA and/or protein expression of XCL1 in the spinal cord after nerve injury as measured on day 1, 4, 7, 14, and 35. Our immunofluorescence study showed that XCL1 is released by astroglial cells located in the spinal cord, despite the neural localization of its receptors. Our results also provided the first evidence that the blockade/neutralization of both receptors, XCR1 and ITGA9, reversed hypersensitivity after intrathecal XCL1 administration in naive mice; however, neutralization of ITGA9 was more effective. In addition, the results proved that the XCL1 neutralizing antibody and, similarly, the blockade of XCR1 and neutralization of ITGA9 diminished thermal and mechanical hypersensitivity in nerve injury-exposed mice after 7 days. Additionally, neutralization of XCL1 improves morphine analgesia. Moreover, blockade of XCR1 positively influences buprenorphine effectiveness, and neutralization of ITGA9 enhances not only buprenorphine but also morphine analgesia. Therefore, blockade of the XCL1-ITGA9 interaction may serve as an innovative strategy for the polypharmacotherapy of neuropathic pain in combination with opioids.

Learn More >

Role of 5-HT1A-mediated upregulation of brain indoleamine 2,3 dioxygenase 1 in the reduced antidepressant and antihyperalgesic effects of fluoxetine during maintenance treatment.

The reduced antidepressant and antihyperalgesic effects of selective serotonin reuptake inhibitors (SSRIs) such as fluoxetine during maintenance treatment has been reported, but little is known about the molecular mechanism of this phenomenon. In three comorbid pain and depression animal models (genetic predisposition, chronic social stress, arthritis), we showed that the fluoxetine's antidepressant and antihyperalgesic effects were reduced during the maintenance treatment. Fluoxetine exposure induced upregulation of the 5-hydroxytryptamine 1A (5-HT1A) auto-receptor and indoleamine 2,3 dioxygenase 1 (IDO1, a rate-limiting enzyme of tryptophan metabolism) in the brainstem dorsal raphe nucleus (DRN), which shifted the tryptophan metabolism away from the 5-HT biosynthesis. Mechanistically, IDO1 upregulation was downstream to fluoxetine-induced 5-HT1A receptor expression because 1) antagonism of the 5-HT1A receptor with WAY100635 or 5-HT1A receptor knockout blocked the IDO1 upregulation, and 2) inhibition of IDO1 activity did not block the 5-HT1A receptor upregulation following fluoxetine exposure. Importantly, inhibition of either the 5-HT1A receptor or IDO1 activity sustained the fluoxetine's antidepressant and antihyperalgesic effects, indicating that 5-HT1A-mediated IDO1 upregulation in the brainstem DRN contributed to the reduced antidepressant and antihyperalgesic effects of fluoxetine. These results suggest a new strategy to improving the therapeutic efficacy of SSRI during maintenance treatment.

Learn More >

Deficits in ascending pain modulation pathways in breast cancer survivors with chronic neuropathic pain: A resting-state fMRI study.

Breast cancer (BC) is the highest frequent malignancy in women globally. Approximately 25-60% of BC patients with chronic neuropathic pain (CNP) result from advances in treating BC. Since the CNP mechanism is unclear, the various treatment methods for CNP are limited. We aimed to explore the brain alternations in BC patients with CNP and the relationship between depression and CNP utilizing resting-state functional magnetic resonance imaging (rs-fMRI).

Learn More >

The impact of multifactorial factors on the Quality of Life of Behçet’s patients over 10 years.

This study analyses the 2020 survey and reviews the 2009, 2014 surveys to ascertain which Behçet's symptoms, personal and family status, patients' lifestyle, and work-related outcomes impacted on Health-Related Quality of Life (HRQoL).

Learn More >

miR-17-92 cluster in osteoarthritis: Regulatory roles and clinical utility.

Osteoarthritis (OA) is the most prevalent articular disease, especially in aged population. Caused by multi-factors (e.g., trauma, inflammation, and overloading), OA leads to pain and disability in affected joints, which decreases patients' quality of life and increases social burden. In pathophysiology, OA is mainly characterized by cartilage hypertrophy or defect, subchondral bone sclerosis, and synovitis. The homeostasis of cell-cell communication is disturbed as well in such pro-inflammatory microenvironment, which provides clues for the diagnosis and treatment of OA. MicoRNAs (miRNAs) are endogenous non-coding RNAs that regulate various processes post-transcriptional mechanisms. The miR-17-92 cluster is an miRNA polycistron encoded by the host gene called MIR17HG. Mature miRNAs generated from MIR17HG participate in biological activities such as oncogenesis, neurogenesis, and modulation of the immune system. Accumulating evidence also indicates that the expression level of miRNAs in the miR-17-92 cluster is tightly related to the pathological processes of OA, such as chondrocyte apoptosis, extracellular matrix degradation, bone remodeling, and synovitis. In this review, we aim to summarize the roles of the miR-17-92 cluster in the underlying molecular mechanism during the development and progression of OA and shed light on the new avenue of the diagnosis and treatment of OA.

Learn More >

Search