I am a
Home I AM A Search Login

Accepted

Share this

Hypothesis: Metformin is a potential reproductive toxicant.

Metformin is the first-line oral treatment for type 2 diabetes mellitus and is prescribed to more than 150 million people worldwide. Metformin's effect as a glucose-lowering drug is well documented but the precise mechanism of action is unknown. A recent finding of an association between paternal metformin treatment and increased numbers of genital birth defects in sons and a tendency towards a skewed secondary sex ratio with less male offspring prompted us to focus on other evidence of reproductive side effects of this drug. Metformin in humans is documented to reduce the circulating level of testosterone in both men and women. In experimental animal models, metformin exposure induced sex-specific reproductive changes in adult rat male offspring with reduced fertility manifested as a 30% decrease in litter size and metformin exposure to fish, induced intersex documented in testicular tissue. Metformin is excreted unchanged into urine and feces and is present in wastewater and even in the effluent of wastewater treatment plants from where it spreads to rivers, lakes, and drinking water. It is documented to be present in numerous freshwater samples throughout the world – and even in drinking water. We here present the hypothesis that metformin needs to be considered a potential reproductive toxicant for humans, and probably also for wildlife. There is an urgent need for studies exploring the association between metformin exposure and reproductive outcomes in humans, experimental animals, and aquatic wildlife.

Learn More >

Chronic pain: Evidence from the national child development study.

Using data from all those born in a single week in 1958 in Britain we track associations between short pain and chronic pain in mid-life (age 44) and subsequent health, wellbeing and labor market outcomes in later life. We focus on data taken at age 50 in 2008, when the Great Recession hit and then five years later at age 55 in 2013 and again at age 62 in 2021 during the Covid pandemic. We find those suffering both short-term and chronic pain at age 44 continue to report pain and poor general health in their 50s and 60s. However, the associations are much stronger for those with chronic pain. Furthermore, chronic pain at age 44 is associated with a range of poor mental health outcomes, pessimism about the future and joblessness at age 55 whereas short-duration pain at age 44 is not. Pain has strong predictive power for pain later in life: pain in childhood predicts pain in mid-life, even when one controls for pain in early adulthood. Pain appears to reflect other vulnerabilities as we find that chronic pain at age 44 predicts whether or not a respondent has Covid nearly twenty years later.

Learn More >

2-Bromopalmitate decreases spinal inflammation and attenuates oxaliplatin-induced neuropathic pain via reducing Drp1-mediated mitochondrial dysfunction.

Oxaliplatin (OXA) is a third-generation platinum compound with clinical activity in multiple solid tumors. Due to the repetition of chemotherapy cycle, OXA-induced chronic neuropathy presenting as paresthesia and pain. This study explored the neuropathy of chemotherapy pain and investigated the analgesic effect of 2-bromopalmitate (2-BP) on the pain behavior of OXA-induced rats. The chemotherapy pain rat model was established by the five consecutive administration of OXA (intraperitoneal, 4 mg/kg). After the establishment of OXA-induced rats, the pain behavior test, inflammatory signal analysis and mitochondrial function measurement were conducted. OXA-induced rats exhibited mechanical allodynia and spinal inflammatory infiltration. Our fluorescence and western blot analysis revealed spinal astrocytes were activated in OXA rats with up-regulation of astrocytic markers. In addition, NOD-, LRR- and pyrin domain-containing 3 (NLRP3) inflammasome mediated inflammatory signal cascade was also activated. Inflammation was triggered by dysfunctional mitochondria which represented by increase in cyclooxygenase-2 (COX-2) level and manganese superoxide dismutase (Mn-SOD) activity. Intrathecally injection of 2-BP significantly attenuated dynamin-related protein 1 (Drp1) mediated mitochondrial fission, recovered mitochondrial function, suppressed NLRP3 inflammasome cascade, and consequently decreased mechanical pain sensitivity. For cell research, 2-BP treatment significantly reversed tumor necrosis factor-α (TNF-α) induced mitochondria membrane potential deficiency and high reactive oxygen species (ROS) level. These findings indicate 2-BP decreases spinal inflammation and relieves OXA-induced neuropathic pain via reducing Drp1-mediated mitochondrial dysfunction.

Learn More >

Neuronal toll like receptor 9 contributes to complete Freund’s adjuvant-induced inflammatory pain in mice.

Toll like receptor 9 (TLR9) is a critical sensor for danger-associated molecular patterns (DAMPs) and a crucial marker of non-sterile/sterile inflammation among all TLRs. However, the significance of TLR9 in inflammatory pain remains unclear. Here, we subcutaneously injected Complete Freund's adjuvant (CFA) into the plantar surface of the hind paw, to established a mouse model of inflammatory pain, and we examined expression and distribution of TLR9 in this model. There was a significant increase of TLR9 mRNA and reduction of mechanical paw withdrawal threshold in mice intraplantar injected with CFA. By contrast, mechanical paw withdrawal threshold significantly increased in mice treated with TLR9 antagonist ODN2088. Furthermore, TLR9 is found predominantly distributed in the neurons by immunofluorescence experiment. Accordingly, neuronal TLR9 downregulation in the spinal cord prevented CFA-induced persistent hyperalgesia. Overall, these findings indicate that neuronal TLR9 in the spinal cord is closely related to CFA-induced inflammatory pain. It provides a potential treatment option for CFA-induced inflammatory pain by applying TLR9 antagonist.

Learn More >

Evaluation of topical oclacitinib and nail trimming as a treatment for murine ulcerative dermatitis in laboratory mice.

Murine ulcerative dermatitis (UD) is a common, multifactorial skin disease of C57BL/6 and C57BL/6-background strains of mice. Many treatment options have been previously reported but have been variably successful and may interfere with specific research studies. Janus kinase (JAK) inhibitors, such as oclacitinib, have been used to treat allergic dermatitis in humans, dogs, and other species. Additionally, topical oclacitinib was shown to improve an induced model of dermatitis in mice. We hypothesized that topical application of oclacitinib in conjunction with hind limb nail trimming would improve UD lesion scores more than our institutional standard treatment regime using meloxicam, topical antibiotic ointment, and nail trimming or nail trimming alone. To test this, mice with naturally occurring UD were recruited to the study and assigned to one of three treatment groups (n = 14/group): nail trim only; nail trim plus meloxicam and topical triple antibiotic ointment; or nail trim plus topical oclacitinib. UD was assessed on days 1, 7, and 14 for all treatment groups, and scored based on a previously published scoring system that quantitatively scored UD lesions based on pruritus, character of the lesion, size of lesion, and location of lesion. Here we found that mean UD scores decreased from day 1 to day 7 and from day 1 to day 14 for all treatment groups. However, there was no significant difference in mean UD score between the treatment groups at any timepoint. These data show that topical oclacitinib and nail trimming together improved UD lesion scores comparably to our institutional standard treatment and nail trimming alone. However, further studies may be warranted to investigate other potential applications of oclacitinib to treat UD.

Learn More >

Immunologic aspects of migraine: A review of literature.

Migraine headaches are highly prevalent, affecting 15% of the population. However, despite many studies to determine this disease's mechanism and efficient management, its pathophysiology has not been fully elucidated. There are suggested hypotheses about the possible mediating role of mast cells, immunoglobulin E, histamine, and cytokines in this disease. A higher incidence of this disease in allergic and asthma patients, reported by several studies, indicates the possible role of brain mast cells located around the brain vessels in this disease. The mast cells are more specifically within the dura and can affect the trigeminal nerve and cervical or sphenopalatine ganglion, triggering the secretion of substances that cause migraine. Neuropeptides such as calcitonin gene-related peptide (CGRP), neurokinin-A, neurotensin (NT), pituitary adenylate-cyclase-activating peptide (PACAP), and substance P (SP) trigger mast cells, and in response, they secrete pro-inflammatory and vasodilatory molecules such as interleukin-6 (IL-6) and vascular endothelial growth factor (VEGF) as a selective result of corticotropin-releasing hormone (CRH) secretion. This stress hormone contributes to migraine or intensifies it. Blocking these pathways using immunologic agents such as CGRP antibody, anti-CGRP receptor antibody, and interleukin-1 beta (IL-1β)/interleukin 1 receptor type 1 (IL-1R1) axis-related agents may be promising as potential prophylactic migraine treatments. This review is going to summarize the immunological aspects of migraine.

Learn More >

Diseases of the musculoskeletal system and connective tissue in relation to temporomandibular disorders-A SWEREG-TMD nationwide case-control study.

Temporomandibular disorders (TMD) are comprised by a heterogenous group of diagnoses with multifaceted and complex etiologies. Although diseases of the musculoskeletal system and connective tissue (MSD) have been reported as risk factors for developing TMD, no nationwide population-based registry studies have been conducted to investigate this possible link. The aim of this study was to investigate the association between MSD and TMD in a population-based sample using Swedish registry data, and to further investigate the difference in such association between patients diagnosed with TMD in a hospital setting and patients surgically treated for the condition.

Learn More >

Is intracrinology of endometriosis relevant in clinical practice? A systematic review on estrogen metabolism.

Endometriosis is a chronic, multifactorial, estrogen-dependent disease. The abnormal endocrine microenvironment of endometriosis lesions is considered a main feature and multiple enzymatic pathways leading to local increased synthesis of estrogens have been identified. However, the relevance of intracrinology in clinical practice is still lacking. Medline, Embase, Scopus database were systematically searched for studies reporting on local estrogens metabolism of endometriotic lesions. The main enzymatic pathways involved in the intracrinology of endometriosis such as aromatase (CYP19A1), 17β-hydroxysteroid dehydrogenase (HSD17B) type 1, type 2 and type 5, steroid sulfatase (STS), estrogen sulfotransferase (SULT1E1) were assessed with a critical perspective on their role in disease endocrine phenotyping, drug resistance and as therapeutic targets. Overall, studies heterogeneity and missing clinical data affect the interpretation of the clinical role of these enzymes. Although the use of some drugs such as aromatase inhibitors has been proposed in clinical practice for two decades, their potential clinical value is still under investigation as well as their modality of administration. A closer look at new, more realistic drug targets is provided and discussed. Altered expression of these key enzymes in the lesions have far reaching implication in the development of new drugs aimed at decreasing local estrogenic activity with a minimal effect on gonadal function; however, given the complexity of the evaluation of the expression of the enzymes, multiple aspects still remains to be clarified.

Learn More >

Autonomic nervous system markers of music-elicited analgesia in people with fibromyalgia: A double-blind randomized pilot study.

To investigate the feasibility of using music listening by adults with fibromyalgia (FM) as a potential tool for reducing pain sensitivity.

Learn More >

Interactions Among Non-Coding RNAs and mRNAs in the Trigeminal Ganglion Associated with Neuropathic Pain.

Recent studies have demonstrated the contribution of non-coding RNAs (ncRNAs) to neuropathic pain. However, the expression profile of ncRNAs in the trigeminal ganglion (TG) and their functional mechanism underlying trigeminal neuropathic pain are still unclear.

Learn More >

Search