I am a
Home I AM A Search Login

Accepted

Share this

EBV infection mediated BDNF expression is associated with bladder inflammation in interstitial cystitis/bladder pain syndrome with Hunner’s lesion.

Interstitial cystitis/bladder pain syndrome with Hunner's lesion (HIC) is characterized by chronic inflammation and nerve hyperplasia; however, the pathogenesis of HIC remains a mystery. In this study, we detected both EBV latency infection genes EBNA-1, LMP-1, and EBV lytic infection BZLF-1 and BRLF-1 expression in the HIC bladders, indicating coexistence of EBV persistence and reactivation in the B cells in HIC bladders. Upregulation of EBV-associated inflammatory genes in the HIC bladders, such as TNF-α and IL-6, suggests EBV infection is implicated in the pathogenesis of bladder inflammation. Nerve hyperplasia and up-regulation of brain-derived neurotrophic factor (BDNF) were noted in the HIC bladders. Double immunochemical staining and flow cytometry revealed the origin of BDNF should be the EBV infected B cells. Inducible BDNF expression was noted in B cells upon EBV infection, but not in the T cells. Chromatin immunoprecipitation study revealed BDNF transcription could be promoted by a cooperation between EBV nuclear antigens, chromatin modifiers, and B cell specific transcription. Knockdown of BDNF in EBV infected B cells resulted in inhibition of cells proliferation and viability. Downregulation of phosphorylated SMAD2 and STAT3 after BDNF knockdown may play a role in the mechanism. Implantation of latent EBV infected B cells into rat bladder walls resulted in higher expression level of CD45 and PGP9.5, suggesting tissue inflammation and nerve hyperplasia. In contrast, implantation of BDNF depleted EBV infected B cells abrogated these effects. This is the first study to provide insights into the mechanisms underlying the involvement of EBV infected B cells in HIC pathogenesis. This article is protected by copyright. All rights reserved.

Learn More >

Molecular and clinical markers of pain relief in complex regional pain syndrome: An observational study.

Complex regional pain syndrome (CRPS) is marked by disproportionate pain after trauma. While long-term outcome is crucial to patients, predictors or biomarkers of the course of pain or CRPS symptoms are still lacking. In particular, microRNAs, such as miR-223, decreased in CRPS, have been described only in cross-sectional studies.

Learn More >

Spinal voltage-gated potassium channel Kv1.3 contributes to neuropathic pain via promotion of microglial M1 polarization and activation of the NLRP3 inflammasome.

Studies have shown that activation of microglia is the main mechanism of neuropathic pain. Kv1.3 channel is a novel therapeutic target for treating neuroinflammatory disorders due to its crucial role in subsets of microglial cells. As such, it may be involved in the processes of neuropathic pain, however, whether Kv1.3 plays a role in neuroinflammation following peripheral nerve injury is unclear. The spared nerve injury model (SNI) was used to establish neuropathic pain. Western blot and immunofluorescence were used to examine the effect of Kv1.3 in the SNI rats. PAP-1, a Kv1.3 specific blocker was administered to alleviate neuropathic pain in the SNI rats. Neuropathic pain and allodynia occurred after SNI, the levels of M1 (CD68, iNos) and M2 (CD206, Arg-1) phenotypes were up-regulated in the spinal cord, and the protein levels of NLRP3, caspase-1 and IL-1β were also increased. Pharmacological blocking of Kv1.3 with PAP-1 alleviated hyperpathia induced by SNI. Meanwhile, intrathecal injection of PAP-1 reduced M1 polarization and decreased NLRP3, caspase-1, and IL-1β expressions of protein levels. Our research indicates that the Kv1.3 channel in the spinal cord contributes to neuropathic pain by promoting microglial M1 polarization and activating the NLRP3 inflammasome.

Learn More >

Roles of Resolvins in Chronic Inflammatory Response.

An inflammatory response is beneficial to the organism, while an excessive uncontrolled inflammatory response can lead to the nonspecific killing of tissue cells. Therefore, promoting the resolution of inflammation is an important mechanism for protecting an organism suffering from chronic inflammatory diseases. Resolvins are a series of endogenous lipid mediums and have the functions of inhibiting a leukocyte infiltration, increasing macrophagocyte phagocytosis, regulating cytokines, and alleviating inflammatory pain. By promoting the inflammation resolution, resolvins play an irreplaceable role throughout the pathological process of some joint inflammation, neuroinflammation, vascular inflammation, and tissue inflammation. Although a large number of experiments have been conducted to study different subtypes of resolvins in different directions, the differences in the action targets between the different subtypes are rarely compared. Hence, this paper reviews the generation of resolvins, the characteristics of resolvins, and the actions of resolvins under a chronic inflammatory response and clinical translation of resolvins for the treatment of chronic inflammatory diseases.

Learn More >

Opioid versus non-opioid analgesia for spine surgery: a systematic review and meta-analysis of randomized controlled trials.

Opioids are the primary analgesics used in patients undergoing spine surgery. Postoperative pain is common despite their liberal use and so are opioid-associated side effects. Non-opioid analgesics are gaining popularity as alternative to opioids in spine surgery.

Learn More >

Conservative Therapies for TMJ Closed Lock: A Randomized Controlled Trial.

Acute anterior disc displacement without reduction (ADDWoR) is characterized by permanent TMJ disc displacement, pain and functional limitations. Occlusal appliances (OA) are among the therapies of choice.

Learn More >

Randomized Feasibility Pilot Trial of Adding a New Three-Dimensional Adjustable Posture-Corrective Orthotic to a Multi-Modal Program for the Treatment of Nonspecific Neck Pain.

The aim of this study was to investigate the feasibility and effect of a multimodal program for the management of chronic nonspecific neck pain CNSNP with the addition of a 3D adjustable posture corrective orthotic (PCO), with a focus on patient recruitment and retention. This report describes a prospective, randomized controlled pilot study with twenty-four participants with CNSNP and definite 3D postural deviations who were randomly assigned to control and study groups. Both groups received the same multimodal program; additionally, the study group received a 3D PCO to perform mirror image therapy for 20-30 min while the patient was walking on a treadmill 2-3 times per week for 10 weeks. Primary outcomes included feasibility, recruitment, adherence, safety, and sample size calculation. Secondary outcomes included neck pain intensity by numeric pain rating scale (NPRS), neck disability index (NDI), active cervical ROM, and 3D posture parameters of the head in relation to the thoracic region. Measures were assessed at baseline and after 10 weeks of intervention. Overall, 54 participants were screened for eligibility, and 24 (100%) were enrolled for study participation. Three participants (12.5%) were lost to reassessment before finishing 10 weeks of treatment. The between-group mean differences in change scores indicated greater improvements in the study group receiving the new PCO intervention. Using an effect size of 0.797, α > 0.05, β = 80% between-group improvements for NDI identified that 42 participants were required for a full-scale RCT. This pilot study demonstrated the feasibility of recruitment, compliance, and safety for the treatment of CNSNP using a 3D PCO to a multimodal program to positively affect CNSNP management.

Learn More >

Comparing the Efficacy of Dorsal Root Ganglion Stimulation With Conventional Medical Management in Patients With Chronic Postsurgical Inguinal Pain: Post Hoc Analyzed Results of the SMASHING Study.

Approximately 10% of patients who undergo inguinal hernia repair or Pfannenstiel incision develop chronic (> three months) postsurgical inguinal pain (PSIP). If medication or peripheral nerve blocks fail, a neurectomy is the treatment of choice. However, some patients do not respond to this treatment. In such cases, stimulation of the dorsal root ganglion (DRG) appears to significantly reduce chronic PSIP in selected patients.

Learn More >

Chronic pain in Alzheimer’s disease: Endocannabinoid system.

Chronic pain, one of the most common reasons adults seek medical care, has been linked to restrictions in mobility and daily activities, dependence on opioids, anxiety, depression, sleep deprivation, and reduced quality of life. Alzheimer's disease (AD), a devastating neurodegenerative disorder (characterized by a progressive impairment of cognitive functions) in the elderly, is often co-morbid with chronic pain. AD is one of the most common neurodegenerative disorders in the aged population. The reported prevalence of chronic pain is 45.8% of the 50 million people with AD. As the population ages, the number of older people who experience AD and chronic pain will also increase. The current treatment options for chronic pain are limited, often ineffective, and have associated side effects. This review summarizes the role of the endocannabinoid system in pain, its potential role in chronic pain in AD, and addresses gaps and future directions.

Learn More >

Reversal of Peripheral Neuropathic Pain by the Small-Molecule Natural Product Narirutin via Block of Na1.7 Voltage-Gated Sodium Channel.

Neuropathic pain is a refractory chronic disease affecting millions of people worldwide. Given that present painkillers have poor efficacy or severe side effects, developing novel analgesics is badly needed. The multiplex structure of active ingredients isolated from natural products provides a new source for phytochemical compound synthesis. Here, we identified a natural product, Narirutin, a flavonoid compound isolated from the , showing antinociceptive effects in rodent models of neuropathic pain. Using calcium imaging, whole-cell electrophysiology, western blotting, and immunofluorescence, we uncovered a molecular target for Narirutin's antinociceptive actions. We found that Narirutin (i) inhibits Veratridine-triggered nociceptor activities in L4-L6 rat dorsal root ganglion (DRG) neurons, (ii) blocks voltage-gated sodium (Na) channels subtype 1.7 in both small-diameter DRG nociceptive neurons and human embryonic kidney (HEK) 293 cell line, (iii) does not affect tetrodotoxin-resistant (TTX-R) Na channels, and (iv) blunts the upregulation of Na1.7 in calcitonin gene-related peptide (CGRP)-labeled DRG sensory neurons after spared nerve injury (SNI) surgery. Identifying Na1.7 as a molecular target of Narirutin may further clarify the analgesic mechanism of natural flavonoid compounds and provide an optimal idea to produce novel selective and efficient analgesic drugs.

Learn More >

Search