I am a
Home I AM A Search Login

Accepted

Share this

Activation of angiotensin II type 2 receptor attenuates lung injury of collagen-induced arthritis by alleviating endothelial cell injury and promoting Ly6C monocyte transition.

As one of the most frequent extra-articular manifestations of rheumatoid arthritis (RA), interstitial lung disease (ILD) is still challenging due to unrevealed pathophysiological mechanism. To address this question, in the present study, we used the classical collagen-induced arthritis (CIA) mouse model to determine the related-immune mechanism of lung injury and possible pharmacological treatment for RA-ILD. At the peak of arthritis, we found CIA mice developed apparent lung injury, characterized by interstitial thickening, inflammatory cell infiltration, and lymphocyte follicle formation. Additionally, the endothelial injury occurred as the number of endothelial cells (ECs) and their CD31 expression decreased. Along with those, monocytes, predominantly Ly6C monocytes with pro-inflammatory phenotype, were also increased. While in the remission period of arthritis, ECs gradually increased with retrieved CD31 expression, leading to decreased infiltrating monocytes, but boosted Ly6C population. Ly6C monocytes were prone to locate around damaged ECs, promoted ECs proliferation and vascular tube formation, and lessened the expression of adhesion molecules. In addition, we evaluated angiotensin II type 2 receptor (Agtr2), which has been demonstrated to be protective against lung injury, could be beneficial in RA-ILD. We found elevated Agtr2 in CIA lung tissue, and activation of Agtr2, within its specific agonist C21, alleviated the pulmonary inflammation in vivo, reduced ECs injury, and promoted monocytes conversion from Ly6C to Ly6C monocytes in vitro. Our data reveal a potential pathological mechanism of RA-ILD that involves ECs damage and inflammatory monocytes infiltration and provide a potential drug target, Agtr2, for RA-ILD treatment.

Learn More >

Orally administered MOTS-c analogue ameliorates dextran sulfate sodium-induced colitis by inhibiting inflammation and apoptosis.

Inflammatory bowel disease (IBD) is a chronic and relapsing inflammatory disorder of the gastrointestinal tract (GI). Currently, the treatment options for IBD are limited. It has been reported that a novel bioactive mitochondrial-derived peptide (MOTS-c) encoded in the mitochondrial 12S rRNA, suppresses inflammatory response by enhancing the phagocytosis of macrophages. The aim of this study was to investigate the protective effects of MOTS-c against dextran sulfate sodium (DSS)-induced colitis. The results showed that intraperitoneal (i.p.) administration of MOTS-c significantly ameliorated the symptoms of DSS-induced experimental colitis, such as body weight loss, colon length shortening, diarrhea, and histological damage. MOTS-c down-regulated the expression of pro-inflammatory cytokines, decreased the plasma levels of myeloperoxidase, and inhibited the activation of macrophages and recruitment of neutrophils. Moreover, treatment with MOTS-c exhibited anti-apoptotic effects and significantly suppressed the phosphorylation of AMPKα1/2, ERK, and JNK. Notably, oral administration of MOTS-c did not result in any significant improvements. Screening of cell penetrating peptides was performed, (PRR)5 was linked to the C-terminus of MOTS-c through a linker to synthesize a new molecule (termed MP) with better penetration into the colon epithelium. In vitro experiments revealed the longer half-life of MP than MOTS-c, and in vivo experiments showed that oral administration of MP significantly ameliorated DSS-induced colitis. CONCLUSION: The present results demonstrate a protective role of MOTS-c in experimental IBD.

Learn More >

Diosgenin Exerts Analgesic Effects by Antagonizing the Selective Inhibition of Transient Receptor Potential Vanilloid 1 in a Mouse Model of Neuropathic Pain.

Diosgenin is a botanical steroidal saponin with immunomodulatory, anti-inflammatory, anti-oxidative, anti-thrombotic, anti-apoptotic, anti-depressant, and anti-nociceptive effects. However, the effects of diosgenin on anti-nociception are unclear. Transient receptor potential vanilloid 1 (TRPV1) plays an important role in nociception. Therefore, we investigated whether TRPV1 antagonism mediates the anti-nociceptive effects of diosgenin. In vivo mouse experiments were performed to examine nociception-related behavior, while in vitro experiments were performed to examine calcium currents in dorsal root ganglion (DRG) and Chinese hamster ovary (CHO) cells. The duration of capsaicin-induced licking (pain behavior) was significantly reduced following oral and intraplantar administration of diosgenin, approaching levels observed in mice treated with the TRPV1 antagonist -(4-tertiarybutylphenyl)-4-(3-cholorphyridin-2-yl) tetrahydropyrazine-1(2H)-carbox-amide. Additionally, oral administration of diosgenin blocked capsaicin-induced thermal hyperalgesia. Further, diosgenin reduced capsaicin-induced Ca currents in a dose-dependent manner in both DRG and CHO cells. Oral administration of diosgenin also improved thermal and mechanical hyperalgesia in the sciatic nerve constriction injury-induced chronic pain model by reducing the expression of TRPV1 and inflammatory cytokines in DRG cells. Collectively, our results suggest that diosgenin exerts analgesic effects via antagonism of TRPV1 and suppression of inflammation in the DRG in a mouse model of neuropathic pain.

Learn More >

Aligning with Patients and Families: Exploring Youth and Caregiver Openness to Pediatric Headache Interventions.

Primary headache disorders are common yet underestimated in youth, resulting in functional disability, decreased quality of life, and caregiver burden. Despite the ubiquity of options, adherence remains challenging for families. One potential factor impacting willingness to engage in recommended treatments is openness. This study explored openness to multidisciplinary headache interventions and the relationships with demographic, pain-related, and psychological variables, among youth and their caregivers. Participants ( = 1087) were youth/caregiver dyads presenting for initial headache evaluation. They completed assessments of openness to headache treatments, medical information, functional disability, and pain-related distress. Overall openness was moderately high for youth and caregivers, and highly correlated between them (r = 0.70). Relationships between youth/caregiver openness to specific interventions were moderate-high (r = 0.42-0.73). These were stronger for interventional techniques but weaker for lifestyle changes. In hierarchical regression models predicting youth and caregiver openness, we found that counterpart openness accounted for the largest portion of variance in their own openness (31-32%), beyond demographic (3%), pain-related (10%), and psychological variables (2-3%). Our findings highlight the importance of involving caregivers in pediatric headache management, given their influence on youth openness and potential involvement in adherence. Awareness of youth/caregiver openness may guide clinicians providing recommendations.

Learn More >

Pharmacological Profile of MP-101, a Novel Non-racemic Mixture of R- and S-dimiracetam with Increased Potency in Rat Models of Cognition, Depression and Neuropathic Pain.

The racemic mixture dimiracetam negatively modulates NMDA-induced glutamate release in rat spinal cord synaptosomal preparations and is orally effective in models of neuropathic pain. In this study, we compared the effects of dimiracetam, its R- or S-enantiomers, and the R:S 3:1 non-racemic mixture (MP-101). In vitro, dimiracetam was more potent than its R- or S-enantiomers in reducing the NMDA-induced [H]D-aspartate release in rat spinal cord synaptosomes. Similarly, acute oral administration of dimiracetam was more effective than a single enantiomer in the sodium monoiodoacetate (MIA) paradigm of painful osteoarthritis. Then, we compared the in vitro effects of a broad range of non-racemic enantiomeric mixtures on the NMDA-induced [H]D-aspartate release. Dimiracetam was a more potent blocker than each isolated enantiomer but the R:S 3:1 non-racemic mixture (MP-101) was even more potent than dimiracetam, with an IC in the picomolar range. In the chronic oxaliplatin-induced neuropathic pain model, MP-101 showed a significantly improved anti-neuropathic profile, and its effect continued one week after treatment suspension. MP-101 also performed better than dimiracetam in animal models of cognition and depression. Based on the benign safety and tolerability profile previously observed with racemic dimiracetam, MP-101 appears to be a novel, promising clinical candidate for the prevention and treatment of several neuropathic and neurological disorders.

Learn More >

Transdermal capsaicin in hand osteoarthritis: a preliminary study.

Learn More >

The association of trace elements with arthritis in US adults: NHANES 2013-2016.

Arthritis is a common chronic disease, and is a major cause of disability and chronic pain in adults. Considering inflammatory responses is closely related with trace elements (TEs), the role of TEs in arthritis has attracted much attention. This study aimed to assess the association between TEs and arthritis.

Learn More >

The pathogenesis of rheumatoid arthritis.

Significant recent progress in understanding rheumatoid arthritis (RA) pathogenesis has led to improved treatment and quality of life. The introduction of targeted-biologic and -synthetic disease modifying anti-rheumatic drugs (DMARDs) has also transformed clinical outcomes. Despite this, RA remains a life-long disease without a cure. Unmet needs include partial response and non-response to treatment in many patients, failure to achieve immune homeostasis or drug free remission, and inability to repair damaged tissues. RA is now recognized as the end of a multi-year prodromal phase in which systemic immune dysregulation, likely beginning in mucosal surfaces, is followed by a symptomatic clinical phase. Inflammation and immune reactivity are primarily localized to the synovium leading to pain and articular damage, but is also associated with a broader series of comorbidities. Here, we review recently described immunologic mechanisms that drive breach of tolerance, chronic synovitis, and remission.

Learn More >

A nociceptive neuronal ensemble in the dorsomedial prefrontal cortex underlies pain chronicity.

Pain chronicity involves unpleasant experience in both somatosensory and affective aspects, accompanied with the prefrontal cortex (PFC) neuroplastic alterations. However, whether specific PFC neuronal ensembles underlie pain chronicity remains elusive. Here we identify a nociceptive neuronal ensemble in the dorsomedial prefrontal cortex (dmPFC), which shows prominent reactivity to nociceptive stimuli. We observed that this ensemble shows distinct molecular characteristics and is densely connected to pain-related regions including basolateral amygdala (BLA) and lateral parabrachial nuclei (LPB). Prolonged chemogenetic activation of this nociceptive neuronal ensemble, but not a randomly transfected subset of dmPFC neurons, induces chronic pain-like behaviors in normal mice. By contrast, silencing the nociceptive dmPFC neurons relieves both pain hypersensitivity and anxiety in mice with chronic inflammatory pain. These results suggest the presence of specific dmPFC neuronal ensembles in processing nociceptive information and regulating pain chronicity.

Learn More >

Chronic pain and continuity of analgesic treatment during the COVID-19 pandemic.

Chronic pain can trigger both physical and mental health complications. During the COVID-19 pandemic, patients with chronic diseases have had reduced access to some medications.

Learn More >

Search