I am a
Home I AM A Search Login

Papers of the Week

Papers: 29 Apr 2023 - 5 May 2023


Human Studies, Neurobiology

Musculoskeletal Pain

2023 Apr 17

J Biomech



The influence of induced gait asymmetry on joint reaction forces.


McCain EM, Dalman MJ, Berno ME, Libera TL, Lewek MD, Sawicki GS, Saul KR


Chronic injury- or disease-induced joint impairments result in asymmetric gait deviations that may precipitate changes in joint loading associated with pain and osteoarthritis. Understanding the impact of gait deviations on joint reaction forces (JRFs) is challenging because of concurrent neurological and/or anatomical changes and because measuring JRFs requires medically invasive instrumented implants. Instead, we investigated the impact of joint motion limitations and induced asymmetry on JRFs by simulating data recorded as 8 unimpaired participants walked with bracing to unilaterally and bilaterally restrict ankle, knee, and simultaneous ankle + knee motion. Personalized models, calculated kinematics, and ground reaction forces (GRFs) were input into a computed muscle control tool to determine lower limb JRFs and simulated muscle activations guided by electromyography-driven timing constraints. Unilateral knee restriction increased GRF peak and loading rate ipsilaterally but peak values decreased contralaterally when compared to walking without joint restriction. GRF peak and loading rate increased with bilateral restriction compared to the contralateral limb of unilaterally restricted conditions. Despite changes in GRFs, JRFs were relatively unchanged due to reduced muscle forces during loading response. Thus, while joint restriction results in increased limb loading, reductions in muscle forces counteract changes in limb loading such that JRFs were relatively unchanged.