- Anniversary/History
- Membership
- Publications
- Resources
- Education
- Events
- Outreach
- Careers
- About
- For Pain Patients and Professionals
Transcutaneous electrical nerve stimulation (TENS) has been used to treat chronic pain. However, the potential efficacy and mechanism of the effect of applying TENS for a short time in chronic pain patients remains unclear. To identify the effect of short-term TENS on chronic pain patients and to clarify the mechanism of the effect, we investigated abnormalities of functional connectivity (FC) within the prefrontal cortex (PFC) using resting-state functional near-infrared spectroscopy (rs-fNIRS). Fifteen patients (56.8 ± 17.4 years, nine females) with chronic pain participated in this rs-fNIRS study. The fNIRS scans included two parts: a 5-minute resting-state scan followed by a 5-minute scan during TENS (150 Hz) application. The pain intensity was measured using a Visual Analog Scale (VAS) and Pittsburgh Sleep Quality Index (PSQI). The spontaneous brain activity of the PFC and resting-state functional connectivity (rsFC) in the PFC were examined during TENS and compared to before TENS. The results showed that Pain intensity significantly decreased after TENS (p < 0.001). During TENS, fALFF values were significantly lower in BA46 (**p = 0.0025) and BA45 (**p = 0.0056). rsFC strength increased during TENS compared to before, with significant group-level increases in BA10, BA9, BA46, and BA44/45 (p < 0.05). Notably, the variation between BA10 and BA44/45 was highly significant (***p < 0.001). These findings suggest that FC between BA10 and BA44/45 was associated with analgesia of TENS in patients with chronic pain, indicating the potential role of FC as a novel objective parameter to predict the outcome of clinical use of TENS for pain relief in chronic pain patients.