I am a
Home I AM A Search Login

Papers of the Week

Papers: 4 Mar 2023 - 10 Mar 2023

Basic Science

Animal Studies, Neurobiology


2023 Mar 07

Brain Res Bull



Modulatory role of intra-accumbal dopamine receptors in the restraint stress-induced antinociceptive responses.


Noursadeghi E, Haghparast A


Stress contributes to pain sensation by affecting several neural pathways, including mesolimbic-cortical dopamine neurons. Nucleus accumbens, an essential element of the mesolimbic dopaminergic pathway, plays a fundamental role in modulating pain and is differentially influenced by stressful events. Since we previously demonstrated the marked association of intra-NAc dopamine receptors with forced swim stress-evoked analgesia in acute pain state, this research was conducted to consider the contribution of intra-accumbal D1- and D2-like dopamine receptors to modulating effects of exposure to restraint stress in pain-related behaviors during the tail-flick test. Stereotaxic surgery was executed to implant a guide cannula within the NAc in male Wistar rats. On the test day, different concentrations of SCH23390 and Sulpiride as D1- and D2-like dopamine receptor antagonists, respectively, were unilaterally microinjected within the NAc. The vehicle animals received saline or 12 % DMSO (0.5 µl) instead of SCH23390 or Sulpiride into the NAc, respectively. Five minutes following receiving drug or vehicle, animals were restrained for 3 h and then their acute nociceptive threshold was measured for a 60-min period by the tail-flick test. Our data revealed that RS considerably enhanced antinociceptive reaction in acute pain states. The analgesia evoked by RS dramatically declined following blocking either D1- or D2-like dopamine receptors in the NAc, an effect was more noticeable by D1-like dopamine receptor antagonist. These findings indicated that intra-NAc dopamine receptors are considerably mediated in the RS-produced analgesia in acute pain states, suggesting their possible role in psychological stress and disease.