I am a
Home I AM A Search Login

Papers of the Week


2022 Mar 14


J Biomol Struct Dyn

Molecular docking and dynamics approach to drug repurposing for inflammatory bowels disease by targeting TNF alpha.

Authors

Halder D, Das S, Joseph A, Jeyaprakash RS
J Biomol Struct Dyn. 2022 Mar 14:1-14.
PMID: 35285757.

Abstract

Inflammatory bowel disease is a chronic disorder of the large intestine with the prevalence of approximately 400 cases in 100000, and it is rising day by day. However, several drugs like sulfasalazine (composed of sulfapyridine and 5-aminosalicylic acid or 5-ASA), corticosteroids, and immunosuppressants manage the disease. But there are no absolute treatments for the pain and inflammation of the disease. TNFα is an important target, and drugs like infliximab and adalimumab have pharmacological potency but with pronounced toxicity. So, we choose this major target TNFα for the virtual screening of US-FDA-approved drugs for its repurposing using the method. The protein TNFα (PDB ID: 2AZ5) with small molecule inhibitor and the US-FDA-approved drug molecules (from Zinc database) were first imported and prepared using Protein Preparation Wizard and LigPrep, respectively, followed by molecular docking, ADMET analysis and prime MMGBSA. After that, the drugs were shortlisted according to dock score, ADMET parameters and MM GBSA dG binding score. After that, the shortlisted drug molecules were subjected to an induced-fit docking analysis. Two of the most promising molecules, (Iopromide) and (Deferoxamine), were chosen for molecular dynamics simulation. Finally, the bioisosteric replacement was used to improve the ADMET properties of these molecules. This research provides an idea for drug exploration and computational tools for drug discovery in treating inflammatory bowel disease.Communicated by Ramaswamy H. Sarma.