I am a
Home I AM A Search Login

Papers of the Week

Papers: 23 Jan 2021 - 29 Jan 2021



Front Neurosci


Cortical Thickness in Migraine: A Coordinate-Based Meta-Analysis.


Sheng LQ, Ma HR, Shi Y, Dai ZY, Zhong JG, Chen F, Pan PL
Front Neurosci. 2020; 14:600423.
PMID: 33488349.


Cortical thickness (CTh) via surface-based morphometry analysis is a popular method to characterize brain morphometry. Many studies have been performed to investigate CTh abnormalities in migraine. However, the results from these studies were not consistent and even conflicting. These divergent results hinder us to obtain a clear picture of brain morphometry regarding CTh alterations in migraine. Coordinate-based meta-analysis (CBMA) is a promising technique to quantitatively pool individual neuroimaging studies to identify consistent brain areas involved. Electronic databases (PubMed, EMBASE, Web of Science, China National Knowledge Infrastructure, WanFang, and SinoMed) and other sources (bioRxiv and reference lists of relevant articles and reviews) were systematically searched for studies that compared regional CTh differences between patients with migraine and healthy controls (HCs) up to May 15, 2020. A CBMA was performed using the Seed-based d Mapping with Permutation of Subject Images approach. In total, we identified 16 studies with 17 datasets reported that were eligible for the CBMA. The 17 datasets included 872 patients with migraine (average sample size 51.3, mean age 39.6 years, 721 females) and 949 HCs (average sample size 59.3, mean age 44.2 years, 680 females). The CBMA detected no statistically significant consistency of CTh alterations in patients with migraine relative to HCs. Sensitivity analysis and subgroup analysis verified this result to be robust. Metaregression analyses revealed that this CBMA result was not confounded by age, gender, aura, attack frequency per month, and illness duration. Our CBMA adds to the evidence of the replication crisis in neuroimaging research that is increasingly recognized. Many potential confounders, such as underpowered sample size, heterogeneous patient selection criteria, and differences in imaging collection and methodology, may contribute to the inconsistencies of CTh alterations in migraine, which merit attention before planning future research on this topic.