I am a
Home I AM A Search Login

Papers of the Week

Papers: 12 Sep 2020 - 18 Sep 2020

Animal Studies, Pharmacology/Drug Development

2020 Sep 10

Mol Pharmacol

Regulation of kappa opioid receptor inactivation depends on sex and cellular site of antagonist action.


Reichard KL, Newton KA, Rivera ZMG, Sotero de Menezes PM, Schattauer SS, Land BB, Chavkin C
Mol Pharmacol. 2020 Sep 10.
PMID: 32913138.


The prototypical member of the receptor-inactivating kappa opioid receptor (KOR) antagonists norbinaltorphimine (norBNI) produces prolonged receptor inactivation by a cJun kinase mechanism. These antagonists have potential therapeutic utility in the treatment of stressdisorders, however additional preclinical characterization is necessary to understand important aspects of their action. In this study, we report that norBNI does not work as effectively in female mice as in males because of estrogen regulation of G-protein receptor kinase (GRK); pretreatment of ovary-intact female mice with the selective GRK2/3 inhibitor, CMPD101, made females equally sensitive to norBNI as males. Prior observations suggested that in vivo treatment with norBNI does not produce long-lasting inhibition of KOR regulation of dopamine release in the nucleus accumbens. We assessed the persistence of norBNI receptor inactivation in subcellular compartments. Fast-scan cyclic voltammetry recordings confirmed that presynaptic inhibition of dopamine release by the KOR agonist U69,593 was not blocked by in vivo pretreatment with norBNI under conditions that prevented KOR mediated aversion and analgesia. We employed a novel in vivo proxy sensor of KOR activation, AAV-DIO-HyPerRed and demonstrated that KOR activation stimulates JNK-dependent ROS production in somatic regions of VTA dopamine neurons, but did not activate ROS production in dopamine terminals. The compartment selective action helps explain how dopamine somatic, but not terminally expressed KORs are inactivated by norBNI. These results further elucidate molecular signaling mechanisms mediating receptor-inactivating KOR antagonist action and advance medication development for this novel class of stress-resilience medications. Kappa opioid receptor (KOR) antagonists are being developed as novel pro-resilience therapeutics for the treatment of mood and substance use disorders. This study showed that the long-acting KOR antagonists are affected by both the sex of the animal and the subcellular compartment in which the receptor is expressed.