I am a
Home I AM A Search Login

Papers of the Week


2020 Aug 18


Exp Neurol

The pudendal nerve motor branch regenerates via a brain derived neurotrophic factor mediated mechanism.

Authors

Balog BM, Askew T, Lin D L, Kuang M, Hanzlicek B, Damaser MS
Exp Neurol. 2020 Aug 18:113438.
PMID: 32822705.

Abstract

Peripheral nerve injuries can significantly reduce quality of life. While some recover, most do not recover fully, resulting in neuropathic pain and loss of sensation and motor function. Research on the mechanisms of peripheral nerve regeneration could elucidate poor patient outcomes and potential treatments. This study was designed to determine if brain derived neurotrophic factor (BDNF) is necessary for pudendal nerve regeneration and functional recovery. Peripheral administration of tyrosine kinase B functional chimera (TrkB) was used to inhibit the BDNF regenerative pathway. Female Sprague-Dawley rats received tyrosine kinase B functional chimera (TrkB) or saline after a pudendal nerve crush (PNC) or Sham PNC and were divided into three groups: Sham PNC, PNC + Saline, and PNC + TrkB. Seven days after injury, relative β tubulin expression (1.0 ± 0.2) was significantly decreased after PNC + TrkB compared to PNC + saline (2.9 ± 1.0). Three weeks after injury, BDNF plasma concentration (1320.8 ± 278.1 pg/ml) was significantly reduced in PNC + TrkB compared to PNC + saline rats (2053.4 ± 211.0 pg/ml). Pudendal nerve motor branch firing rate (54.0 ± 9.5 Hz) was significantly decreased in the PNC + TrkB group compared to the PNC + saline group (120.4 ± 17.1 Hz); while nerve firing rate of the PNC + saline group was not significantly different from sham PNC rats (121.8 ± 26.6 Hz). This study demonstrated that peripheral administration of TrkB bound free BDNF and inhibited the regenerative response after PNC. BDNF is necessary for normal PN motor branch recovery after PNC.