I am a
Home I AM A Search Login

Pharmacology/Drug Development

Share this

Early life vincristine fails to prime developing pain pathways.

Early life administration of vincristine (VNC), commonly used to treat pediatric leukemia, evokes peripheral neuropathy and mechanical pain hypersensitivity in rats that lasts into adolescence. However, the degree to which VNC-evoked neuropathic pain persists throughout adulthood has yet to be examined. It also remains unclear if pediatric VNC exposure can 'prime' developing nociceptive pathways and thereby exacerbate chronic pain following subsequent trauma later in life. To address these issues, rats received five total doses of VNC (60 µg/kg; or vehicle) on postnatal days (P) 11, 13, 17, 19 and 21 followed by a hindpaw surgical incision during adulthood. In addition, in order to model the clinical scenario where cancer relapse necessitates another round of chemotherapy, separate groups of rats that had been treated with VNC (or vehicle) as neonates were subsequently administered VNC as adults (five injections at 100 µg/kg). Intraepidermal nerve fiber density and baseline mechanical pain sensitivity were similar between the neonatal VNC and vehicle-treated littermate controls at 13-15 weeks of age, suggesting that the peripheral neuropathy, and resulting chronic pain, had resolved by adulthood. Importantly, there was no significant overall effect of early life VNC on the severity of post-operative pain following adult incision. Similarly, prior VNC exposure did not significantly influence the degree of mechanical pain hypersensitivity produced by adult VNC treatment. Collectively, these findings suggest that early life VNC administration does not increase the susceptibility to develop chronic pain as adults.

Learn More >

Postoperative Pain and Analgesic Requirements in the First Year after Intraoperative Methadone for Complex Spine and Cardiac Surgery.

Methadone is a long-acting opioid that has been reported to reduce postoperative pain scores and analgesic requirements and may attenuate development of chronic postsurgical pain. The aim of this secondary analysis of two previous trials was to follow up with patients who had received a single intraoperative dose of either methadone or traditional opioids for complex spine or cardiac surgical procedures.

Learn More >

Trigeminal Neuralgia: an overview from pathophysiology to pharmacological treatments.

The trigeminal nerve (V) is the fifth and largest of all cranial nerves and it is responsible for detecting sensory stimuli that arise from the craniofacial area. The nerve is divided into three branches: ophthalmic (V1), maxillary (V2) and mandibular (V3); their cell bodies are located in the trigeminal ganglia (TG) and they make connections with second order neurons in the trigeminal brainstem sensory nuclear complex (VBSNC). Ascending projections via the trigeminothalamic tract transmit information to the thalamus and other brain regions responsible for interpreting sensory information. One of the most common forms of craniofacial pain is trigeminal neuralgia (TN). TN is characterized by sudden, brief and excruciating facial pain attacks in one or more of the V branches, leading to a severe reduction in the quality of life of affected patients. TN etiology can be classified into: idiopathic, classic, and secondary. Classic TN is associated with neurovascular compression in the trigeminal root entry zone, which can lead to demyelination and a dysregulation of voltage gated sodium channel (VGSC) expression in the membrane. These alterations may be responsible for pain attacks in TN patients. The antiepileptic drugs carbamazepine (CBZ) and oxcarbazepine (OXC) are the first-line pharmacological treatment for TN. Their mechanism of action is a modulation of VGSCs, leading to a decrease in neuronal activity. Although CBZ and OXC are the first-line treatment, other drugs may be useful for pain control in TN. Among them, the anticonvulsants gabapentin, pregabalin, lamotrigine and phenytoin, baclofen and botulinum toxin type A can be co-administered with CBZ or OXC for a synergistic approach. New pharmacological alternatives are being explored such as the active metabolite of OXC, eslicarbazepine, and the new Nav1.7 blocker vixotrigine. The pharmacological profiles of these drugs are addressed in this review.

Learn More >

Characterizing DNA methylation in prescription opioid users with chronic musculoskeletal pain.

Many patients with chronic pain use prescription opioids. Epigenetic modification of the μ-opioid receptor 1 () gene, which codes for the target protein of opioids, may influence vulnerability to opioid abuse and response to opioid pharmacotherapy, potentially affecting pain outcomes.

Learn More >

Systemic administration of a β2-adrenergic receptor agonist reduces mechanical allodynia and suppresses the immune response to surgery in a rat model of persistent post-incisional hypersensitivity.

Beta 2 adrenergic receptor (β2 AR) activation in the central and peripheral nervous system has been implicated in nociceptive processing in acute and chronic pain settings with anti-inflammatory and anti-allodynic effects of β2-AR mimetics reported in several pain states. In the current study, we examined the therapeutic efficacy of the β2-AR agonist clenbuterol in a rat model of persistent postsurgical hypersensitivity induced by disruption of descending noradrenergic signaling in rats with plantar incision. We used growth curve modeling of ipsilateral mechanical paw withdrawal thresholds following incision to examine effects of treatment on postoperative trajectories. Depletion of spinal noradrenergic neurons delayed recovery of hypersensitivity following incision evident as a flattened slope compared to non-depleted rats (-1.8 g/day with 95% CI -2.4 to -1.085, p < 0.0001). Chronic administration of clenbuterol reduced mechanical hypersensitivity evident as a greater initial intercept in noradrenergic depleted (6.2 g with 95% CI 1.6 to 10.8, p = 0.013) and non-depleted rats (5.4 g with 95% CI 1.2 to 9.6, p = 0.018) with plantar incision compared to vehicle treated rats. Despite a persistent reduction in mechanical hypersensitivity, clenbuterol did not alter the slope of recovery when modeled over several days (p = 0.053) or five weeks in depleted rats (p = 0.64). Systemic clenbuterol suppressed the enhanced microglial activation in depleted rats and reduced the density of macrophage at the site of incision. Direct spinal infusion of clenbuterol failed to reduce mechanical hypersensitivity in depleted rats with incision suggesting that beneficial effects of β2-AR stimulation in this model are largely peripherally mediated. Lastly, we examined β2-AR distribution in the spinal cord and skin using hybridization and IHC. These data add to our understanding of the role of β2-ARs in the nervous system on hypersensitivity after surgical incision and extend previously observed anti-inflammatory actions of β2-AR agonists to models of surgical injury.

Learn More >

Essential statistical principles of clinical trials of pain treatments.

This article presents an overview of fundamental statistical principles of clinical trials of pain treatments. Statistical considerations relevant to phase 2 proof of concept and phase 3 confirmatory randomized trials investigating efficacy and safety are discussed, including (1) research design; (2) endpoints and analyses; (3) sample size determination and statistical power; (4) missing data and trial estimands; (5) data monitoring and interim analyses; and (6) interpretation of results. Although clinical trials of pharmacologic treatments are emphasized, the key issues raised by these trials are also directly applicable to clinical trials of other types of treatments, including biologics, devices, nonpharmacologic therapies (eg, physical therapy and cognitive-behavior therapy), and complementary and integrative health interventions.

Learn More >

Patterns of pharmacologic and non-pharmacologic treatment, treatment satisfaction and perceived tolerability in patients with fibromyalgia: a patients’ survey.

To evaluate the patterns of treatment among patients with fibromyalgia (FM) in Spain and to assess patient satisfaction and perceived tolerability of the treatment received.

Learn More >

Molecular basis for pore blockade of human Na channel Na1.2 by the μ-conotoxin KIIIA.

The voltage-gated sodium channel Na1.2 is responsible for the initiation and propagation of action potentials in the central nervous system. We report the cryo-electron microscopy structure of human Na1.2 bound to a peptidic pore blocker, the μ-conotoxin KIIIA, in the presence of an auxiliary subunit β2 to an overall resolution of 3.0 Å. The immunoglobulin (Ig) domain of β2 interacts with the shoulder of the pore domain through a disulfide bond. The 16-residue KIIIA interacts with the extracellular segments in repeats I to III, placing Lys7 at the entrance to the selectivity filter. Many interacting residues are specific to Na1.2, revealing a molecular basis for KIIIA specificity. The structure establishes a framework for rational design of subtype-specific blockers for Na channels.

Learn More >

Amitriptyline influences the mechanical withdrawal threshold in bone cancer pain rats by regulating glutamate transporter GLAST.

Patients with cancer, especially breast, prostate, and lung cancer, commonly experience bone metastases that are difficult to manage and are associated with bone cancer pain (BCP). Amitriptyline is often used to treat chronic pain, such as neuropathic pain. In the present study, the effects of amitriptyline on the mechanical withdrawal threshold (MWT) and its underlying mechanisms were evaluated in rat models of BCP. Walker 256 rat mammary gland carcinoma cells were injected into the bone marrow cavity of the right tibia of rats to provoke BCP. Then, amitriptyline was intraperitoneally administered twice daily from fifth day after the operation. Rats with bone cancer showed an apparent decline in the MWT at day 11 after Walker 256 cells inoculation. The levels of the glutamate transporter GLAST in the spinal cord dorsal horn decreased remarkably, and the concentration of the excitatory amino acid (EAA) glutamate (Glu) in the cerebrospinal fluid (CSF) increased substantially. Amitriptyline injection could prevent the decline of MWT in BCP rats. In addition, GLAST was upregulated on the glial cell surface, and Glu levels were reduced in the CSF. However, amitriptyline injection could not prevent the BCP-induced reduction in GLAST in the glial cell cytosol, it further downregulated cytosolic GLAST. Amitriptyline had no significant effect on GLAST mRNA expression, and BCP-invoked PKA/PKC upregulation was prevented. Taken together, these results suggest that the intraperitoneal injection of amitriptyline can prevent the decrease of MWT in BCP rats, the underlying mechanisms may be associated with the inhibition of PKA/PKC expression, thus promoting GLAST trafficking onto the glial cell surface and reducing EAA concentrations in the CSF.

Learn More >

FRONT AND HIND PAW DIFFERENTIAL ANALGESIC EFFECTS OF AMITRIPTYLINE, GABAPENTIN, IBUPROFEN AND URB937 ON MECHANICAL AND COLD SENSITIVITY IN CISPLATIN-INDUCED NEUROPATHY.

Cisplatin is a widely used platinum-derived antineoplastic agent that frequently results in peripheral neuropathy. Therapeutic strategies for neuropathic pain are limited and characterized by variable efficacy and severe adverse effects. Clinical translation of novel analgesics has proven difficult with many agents demonstrating preclinical efficacy failing in clinical trials. Preclinical studies frequently assess pain behaviors in the hind paws, however the front paws have a greater degree of the fine sensorimotor functions characteristically damaged by chemotherapy-induced neuropathy. This is the first study to assess pain responses in the front paws. Here we test the hypothesis that mouse front paws exhibit pain-related alterations in mechanical and thermal (cold) sensitivity in a murine model of cisplatin-induced neuropathy, and that pharmacological treatment with amitriptyline, gabapentin, ibuprofen and URB937 normalize pain behaviors in the front and hind paws. Cold (acetone withdrawal latencies) and mechanical (von Frey withdrawal thresholds) sensitivity were significantly decreased and increased respectively in both the front and the hind paws following initiation of weekly systemic (intraperitoneal) cisplatin injections (5 mg/kg). For the hind paws, systemic administration of amitriptyline (30 mg/kg), gabapentin (100 mg/kg), ibuprofen (0 -10 mg/kg) or URB937 (0 -10 mg/kg) resulted in a decrease in acetone withdrawal latencies and increase in von Frey withdrawal thresholds with return to normal values at the highest doses tested. For the front paws, return to baseline values for the highest doses was found for cold allodynia but not mechanical allodynia, where the highest doses failed to return to baseline values. These results indicate that mouse front paws exhibit pain-related changes in cisplatin-induced neuropathy and that drug effects can vary based on testing stimulus and location. This suggests that front paw responses across multiple modalities provide reliable and accurate information about pain-related drug effects. Future studies should be aimed at elucidating the mechanisms underlying these differential effects.

Learn More >

Search