I am a
Home I AM A Search Login

Pharmacology/Drug Development

Share this

A New Generation of Treatments for Itch.

For decades, antihistamines have been the mainstay of treatment for chronic pruritus, yet they often only work by making patients drowsy and forgetful of their itch. A new era of antipruritic drugs is quickly approaching, presenting more effective treatments for patients suffering from chronic itch. Several treatments have been developed targeting specific receptors in the nervous system, such as the transient receptor potential channels, sodium channels, neurokinin-1 receptors, opioid receptors, and many more. Additionally, antipruritic therapies developed to work on the immune system have become more targeted, leading to greater safety and efficacy measures. These include crisaborole, several interleukin antagonists, and janus kinase inhibitors. The promising results presented with these new antipruritic therapies allow physicians to be better equipped to treat their itchy patients.

Learn More >

Prescription of analgesics to long-term survivors of cancer in early adulthood, adolescence and childhood in Norway: a national cohort study.

Increasing numbers survive cancers in childhood and adolescence. Long-term survivors of cancers in adulthood have increased prevalence of pain and consumption of analgesics. It is not established whether long-term survivors of cancers in childhood and adolescence also have an increased use of analgesics. However, based on increased use of antidepressants and anxiolytics in long-term survivors of cancers in childhood and adolescence, we hypothesized that this group also had increased use of analgesics. Based on data from the two nationwide registers the Cancer Registry of Norway and the Norwegian Prescription Database a cohort of 5585 (52% males) long-term survivors of cancers in childhood, adolescence and early adult life was established. Age and gender adjusted comparisons were made to the general population. The age adjusted one-year periodic prevalence of receiving prescriptions of opioids, benzodiazepines and benzodiazepine-related hypnotics in the study population was increased by 20-50% and the one-year periodic prevalence of receiving prescriptions of gabapentinoids was approximately increased two-fold compared to the general population. For paracetamol and NSAIDs no difference was found. For those survivors, who were persistent or high-dose users of opioids, co-medication with high doses of benzodiazepines and/or benzodiazepine-related hypnotics was far more common than among persistent and high-dose opioid users in the general population. The high prevalence of gabapentinoids may indicate increased prevalence of neuropathic pain in this group. The high degree of co-medication with benzodiazepines and/or benzodiazepine-related hypnotics in survivors on persistent and high-dose opioids might be an indication of problematic opioid use or addiction.

Learn More >

Dichotomic effects of clinically used drugs on tumor growth, bone remodeling and pain management.

Improvements in the survival of breast cancer patients have led to the emergence of bone health and pain management as key aspects of patient's quality of life. Here, we used a female rat MRMT-1 model of breast cancer-induced bone pain to compare the effects of three drugs used clinically morphine, nabilone and zoledronate on tumor progression, bone remodeling and pain relief. We found that chronic morphine reduced the mechanical hypersensitivity induced by the proliferation of the luminal B aggressive breast cancer cells in the tumor-bearing femur and prevented spinal neuronal and astrocyte activation. Using MTT cell viability assay and MRI coupled to FDG PET imaging followed by ex vivo 3D µCT, we further demonstrated that morphine did not directly exert tumor growth promoting or inhibiting effects on MRMT-1 cancer cells but induced detrimental effects on bone healing by disturbing the balance between bone formation and breakdown. In sharp contrast, both the FDA-approved bisphosphonate zoledronate and the synthetic cannabinoid nabilone prescribed as antiemetics to patients receiving chemotherapy were effective in limiting the osteolytic bone destruction, thus preserving the bone architecture. The protective effect of nabilone on bone metabolism was further accompanied by a direct inhibition of tumor growth. As opposed to zoledronate, nabilone was however not able to manage bone tumor-induced pain and reactive gliosis. Altogether, our results revealed that morphine, nabilone and zoledronate exert disparate effects on tumor growth, bone metabolism and pain control. These findings also support the use of nabilone as an adjuvant therapy for bone metastases.

Learn More >

Pain and stress: functional evidence that supra-spinal mechanisms involved in pain-induced analgesia mediate stress-induced analgesia.

Analgesia induced by stressful and painful stimuli is an adaptive response during life-threatening situations. There is no evidence linking the mechanisms underlying them, while the former depends on the activation of stress-related brain pathways, the second depends on opioidergic mechanisms in the nucleus accumbens and on nicotinic cholinergic mechanisms in the rostral ventromedial medulla. In this study, we hypothesized that stress-induced analgesia is also dependent on opioidergic mechanisms in the nucleus accumbens and on nicotinic cholinergic mechanisms in the rostral ventromedial medulla. We used immobilization, a classical procedure to induce acute stress, and evaluated its ability to decrease the nociceptive responses induced either by carrageenan or by formalin in rats. Immobilization stress significantly decreased either carrageenan-induced hyperalgesia or formalin-induced tonic nociception in a time-dependent manner. This stress-induced analgesia is similar to pain-induced analgesia, as revealed by contrasting the antinociceptive effect induced by immobilization and by a forepaw injection of capsaicin. The administration of a µ-opioid receptor antagonist (CTOP, 0.5 µg) into the nucleus accumbens, as well as that of a nicotinic cholinergic receptor antagonist (mecamylamine, 0.6 µg) into the rostral ventromedial medulla, blocked immobilization stress-induced analgesia in both pain models. These results demonstrate that supraspinal mechanisms which are known to mediate pain-induced analgesia also mediate stress-induced analgesia. Therefore both forms of analgesia have overlapping mechanisms, probably recruited in response to the perception of danger.

Learn More >

Systematic Review of the Use of Intravenous Ketamine for Fibromyalgia.

Fibromyalgia, a complex disorder that affects 1% to 5% of the population, presents as widespread chronic musculoskeletal pain without physical or laboratory signs of any specific pathologic process. The mechanism, while still being explored, suggests central sensitization and disordered pain regulation at the spinal cord and supraspinal levels, with a resulting imbalance between excitation and inhibition that may alter central nervous system nociceptive processing. Nociceptive hypersensitivity results from activity of the N-methyl-D-aspartate receptor (NMDAR)-mediated glutamatergic synaptic transmission in the spinal cord and brain. Because ketamine, an NMDAR antagonist, may reduce induction of synaptic plasticity and maintenance of chronic pain states, the study of its use in intravenous form to treat fibromyalgia has increased. We conducted a literature search with the objectives of examining the effect of intravenous ketamine administration on pain relief, identifying side effects, and highlighting the need for clinical studies to evaluate ketamine infusion treatment protocols for patients with fibromyalgia. We used the keywords "fibromyalgia," "chronic pain," "ketamine," "intravenous," and "infusion" and found 7 publications that included 118 patients with fibromyalgia who met inclusion criteria. Clinical studies revealed a short-term reduction-only for a few hours after the infusions-in self-reported pain intensity with single, low-dose, intravenous ketamine infusions, likely attributable to nociception-dependent central sensitization in fibromyalgia via NMDAR blockade. Case studies suggest that increases in the total dose of ketamine and longer, more frequent infusions may be associated with more effective pain relief and longer-lasting analgesia. Another neurotransmitter release may be contributing to this outcome. This systematic review suggests a dose response, indicating potential efficacy of intravenous ketamine in the treatment of fibromyalgia.

Learn More >

Impact of the COVID-19 pandemic on the pharmacological, physical, and psychological treatments of pain: findings from the Chronic Pain & COVID-19 Pan-Canadian Study.

Multimodal treatment is recognized as the optimal paradigm for the management of chronic pain (CP). Careful balance between pharmacological and physical/psychological approaches is thus desirable but can be easily disrupted.

Learn More >

Anti-inflammatory dopamine- and serotonin-based endocannabinoid epoxides reciprocally regulate cannabinoid receptors and the TRPV1 channel.

The endocannabinoid system is a promising target to mitigate pain as the endocannabinoids are endogenous ligands of the pain-mediating receptors-cannabinoid receptors 1 and 2 (CB1 and CB2) and TRPV1. Herein, we report on a class of lipids formed by the epoxidation of N-arachidonoyl-dopamine (NADA) and N-arachidonoyl-serotonin (NA5HT) by epoxygenases. EpoNADA and epoNA5HT are dual-functional rheostat modulators of the endocannabinoid-TRPV1 axis. EpoNADA and epoNA5HT are stronger modulators of TRPV1 than either NADA or NA5HT, and epoNA5HT displays a significantly stronger inhibition on TRPV1-mediated responses in primary afferent neurons. Moreover, epoNA5HT is a full CB1 agonist. These epoxides reduce the pro-inflammatory biomarkers IL-6, IL-1β, TNF-α and nitrous oxide and raise anti-inflammatory IL-10 cytokine in activated microglial cells. The epoxides are spontaneously generated by activated microglia cells and their formation is potentiated in the presence of anandamide. Detailed kinetics and molecular dynamics simulation studies provide evidence for this potentiation using the epoxygenase human CYP2J2. Taken together, inflammation leads to an increase in the metabolism of NADA, NA5HT and other eCBs by epoxygenases to form the corresponding epoxides. The epoxide metabolites are bioactive lipids that are potent, multi-faceted molecules, capable of influencing the activity of CB1, CB2 and TRPV1 receptors.

Learn More >

The ACTTION Guide to Clinical Trials of Pain Treatments, part II: mitigating bias, maximizing value.

Summaries of the articles included in part II of the ACTTION Guide to Clinical Trials of Pain Treatments are followed by brief overviews of methodologic considerations involving precision pain medicine, pragmatic clinical trials, real world evidence, and patient engagement in clinical trials.

Learn More >

Control of synaptic transmission and neuronal excitability in the parabrachial nucleus.

The parabrachial nucleus (PB) is a hub for aversive behaviors, including those related to pain. We have shown that the expression of chronic pain is causally related to amplified activity of PB neurons, and to changes in synaptic inhibition of these neurons. These findings indicate that regulation of synaptic activity in PB may modulate pain perception and be involved in the pathophysiology of chronic pain. Here, we identify the roles in PB of signaling pathways that modulate synaptic functions. In pharmacologically isolated lateral PB neurons in acute mouse slices we find that baclofen, a GABA receptor agonist, suppresses the frequency of miniature inhibitory and excitatory postsynaptic currents (mIPSCs and mEPSC). Activation of µ-opioid peptide receptors with DAMGO had similar suppressive effects on excitatory and inhibitory synapses, while the κ-opioid peptide receptor agonist U-69593 suppressed mIPSC release but had no consistent effects on mEPSCs. Activation of cannabinoid type 1 receptors with WIN 55,212-2 reduced the frequency of both inhibitory and excitatory synaptic events, while the CB1 receptor inverse agonist AM251 had opposite effects on mIPSC and mEPSC frequencies. AM251 increased the frequency of inhibitory events but led to a reduction in excitatory events through a GABA mediated mechanism. Although none of the treatments produced a consistent effect on mIPSC or mEPSC amplitudes, baclofen and DAMGO both reliably activated a postsynaptic conductance. These results demonstrate that multiple signaling pathways can alter synaptic transmission and neuronal excitability in PB and provide a basis for investigating the contributions of these systems to the development and maintenance of chronic pain.

Learn More >

Long-term opioid therapy for chronic noncancer pain: second update of the German guidelines.

The opioid epidemic in North America challenges national guidelines worldwide to define the importance of opioids for the management of chronic noncancer pain (CNCP).

Learn More >

Search