I am a
Home I AM A Search Login

Pharmacology/Drug Development

Share this

Pain-related changes in cutaneous innervation of patients suffering from bortezomib-induced, diabetic or chronic idiopathic axonal polyneuropathy.

Consistent associations between the severity of neuropathic pain and cutaneous innervation have not been described. We collected demographic and clinical data, McGill Pain Questionnaires (MPQ) and skin biopsies processed for PGP9.5 and CGRP immunohistochemistry from patients with bortezomib-induced peripheral neuropathy (BiPN; n=22), painful diabetic neuropathy (PDN; n=16), chronic idiopathic axonal polyneuropathy (CIAP; n=16) and 17 age-matched healthy volunteers. Duration of neuropathic symptoms was significantly shorter in patients with BiPN in comparison with PDN and CIAP patients. BiPN was characterized by a significant increase in epidermal axonal swellings and upper dermis nerve fiber densities (UDNFD) and a decrease in subepidermal nerve fiber densities (SENFD) of PGP9.5-positive fibers and of PGP9.5 containing structures that did not show CGRP labeling, presumably non-peptidergic fibers. In PDN and CIAP patients, intraepidermal nerve fiber densities (IENFD) and SENFD of PGP9.5-positive and of non-peptidergic fibers were decreased in comparison with healthy volunteers. Significant unadjusted associations between IENFD and SENFD of CGRP-positive, i.e. peptidergic, fibers and the MPQ sensory-discriminative, as well as between UDNFD of PGP9.5-positive fibers and the MPQ evaluative/affective component of neuropathic pain, were found in BiPN and CIAP patients. No significant associations were found in PDN patients. Cutaneous innervation changes in BiPN confirm characteristic features of early, whereas those in CIAP and PDN are in line with late forms of neuropathic pathology. Our results allude to a distinct role for non-peptidergic nociceptors in BiPN and CIAP patients. The lack of significant associations in PDN may be caused by mixed ischemic and purely neuropathic pain pathology.

Learn More >

Introduction to the Theme “Ion Channels and Neuropharmacology: From the Past to the Future”.

"Ion Channels and Neuropharmacology: From the Past to the Future" is the main theme of articles in Volume 60 of the . Reviews in this volume discuss a wide spectrum of therapeutically relevant ion channels and GPCRs with a particular emphasis on structural studies that elucidate drug binding sites and mechanisms of action. The regulation of ion channels by second messengers, including Ca and cyclic AMP, and lipid mediators is also highly relevant to several of the ion channels discussed, including KCNQ channels, HCN channels, L-type Ca channels, and AMPA receptors, as well as the aquaporin channels. Molecular identification of exactly where drugs bind in the structure not only elucidates their mechanism of action but also aids future structure-based drug discovery efforts to focus on relevant pharmacophores. The ion channels discussed here are targets for multiple nervous system diseases, including epilepsy and neuropathic pain. This theme complements several previous themes, including "New Therapeutic Targets," "New Approaches for Studying Drug and Toxicant Action: Applications to Drug Discovery and Development," and "New Methods and Novel Therapeutic Approaches in Pharmacology and Toxicology."

Learn More >

Fremanezumab and its isotype slow propagation rate and shorten cortical recovery period but do not prevent occurrence of cortical spreading depression in rats with compromised blood brain barrier.

Most centrally-acting migraine preventive drugs suppress frequency and velocity of cortical spreading depression (CSD). The purpose of the current study was to determine how the new class of peripherally acting migraine preventive drug (i.e., the anti-CGRP-mAbs) affect CSD – an established animal model of migraine aura, which affects about 1/3 of people with migraine – when allowed to cross the blood brain barrier (BBB). Using standard electrocorticogram recording techniques and rats in which the BBB was intentionally compromised, we found that when the BBB was opened, the anti-CGRP-mAb fremanezumab did not prevent the induction, occurrence or propagation of a single wave of CSD induced by a pinprick, but that both fremanezumab and its isotype were capable of slowing down the propagation velocity of CSD and shortening the period of profound depression of spontaneous cortical activity that followed the spreading depolarization. Fremanezumab's inability to completely block the occurrence of CSD in animals in which the BBB was compromised suggests that CGRP may not be involved in the initiation of CSD, at least not to the extent that it can prevent its occurrence. Similarly, we cannot conclude that CGRP is involved in the propagation velocity or the neuronal silencing period (also called cortical recovery period) that follows the CSD because similar effects were observed when the isotype was used. These finding call for caution with interpretations of studies that claim to show direct CNS effects of anti-CGRP-mAbs.

Learn More >

Agmatine requires GluN2B-containing NMDA receptors to inhibit the development of neuropathic pain.

A decarboxylated form of L-arginine, agmatine, preferentially antagonizes NMDArs containing Glun2B subunits within the spinal cord and lacks motor side effects commonly associated with non-subunit-selective NMDAr antagonism, namely sedation and motor impairment. Spinally delivered agmatine has been previously shown to reduce the development of tactile hypersensitivity arising from spinal nerve ligation. The present study interrogated the dependence of agmatine's alleviation of neuropathic pain (spared nerve injury (SNI) model) on GluN2B-containing NMDArs. SNI-induced hypersensitivity was induced in mice with significant reduction of levels of spinal GluN2B subunit of the NMDAr and their floxed controls. Agmatine reduced development of SNI-induced tactile hypersensitivity in controls but had no effect in subjects with reduced levels of GluN2B subunits. Ifenprodil, a known GluN2B-subunit-selective antagonist, similarly reduced tactile hypersensitivity in controls but not in the GluN2B-deficient mice. In contrast, MK-801, an NMDA receptor channel blocker, reduced hypersensitivity in both control and GluN2B-deficient mice, consistent with a pharmacological pattern expected from a NMDAr antagonist that does not have preference for GluN2B subtypes. Additionally, we observed that spinally delivered agmatine, ifenprodil and MK-801 inhibited nociceptive behaviors following intrathecal delivery of NMDA in control mice. By contrast, in GluN2B-deficient mice, MK-801 reduced NMDA-evoked nociceptive behaviors, but agmatine had a blunted effect and ifenprodil had no effect. These results demonstrate that agmatine requires the GluN2B subunit of the NMDA receptor for inhibitory pharmacological actions in pre-clinical models of NMDA receptor-dependent hypersensitivity.

Learn More >

Purification and Characterization of the Pink-Floyd Drillipeptide, a Bioactive Venom Peptide from (Gastropoda: Conoidea: Drilliidae).

The cone snails (family Conidae) are the best known and most intensively studied venomous marine gastropods. However, of the total biodiversity of venomous marine mollusks (superfamily Conoidea, >20,000 species), cone snails comprise a minor fraction. The venoms of the family Drilliidae, a highly diversified family in Conoidea, have not previously been investigated. In this report, we provide the first biochemical characterization of a component in a Drilliidae venom and define a gene superfamily of venom peptides. A bioactive peptide, cdg14a, was purified from the venom of Fedosov and Puillandre, 2020. The peptide is small (23 amino acids), disulfide-rich (4 cysteine residues) and belongs to the J-like drillipeptide gene superfamily. Other members of this superfamily share a conserved signal sequence and the same arrangement of cysteine residues in their predicted mature peptide sequences. The cdg14a peptide was chemically synthesized in its bioactive form. It elicited scratching and hyperactivity, followed by a paw-thumping phenotype in mice. Using the Constellation Pharmacology platform, the cdg14a drillipeptide was shown to cause increased excitability in a majority of non-peptidergic nociceptors, but did not affect other subclasses of dorsal root ganglion (DRG) neurons. This suggests that the cdg14a drillipeptide may be blocking a specific molecular isoform of potassium channels. The potency and selectivity of this biochemically characterized drillipeptide suggest that the venoms of the Drilliidae are a rich source of novel and selective ligands for ion channels and other important signaling molecules in the nervous system.

Learn More >

Association of Tramadol With All-Cause Mortality Among Patients With Osteoarthritis.

An American Academy of Orthopaedic Surgeons guideline recommends tramadol for patients with knee osteoarthritis, and an American College of Rheumatology guideline conditionally recommends tramadol as first-line therapy for patients with knee osteoarthritis, along with nonsteroidal anti-inflammatory drugs.

Learn More >

Effect of catechol-O-methyltransferase (rs4680) single nucleotide polymorphism on opioid induced hyperalgesia in adults with chronic pain.

Learn More >

High frequency medical cannabis use is associated with worse pain among individuals with chronic pain.

Cannabis is widely used for chronic pain. However, there is some evidence of an inverse dose-response relationship between cannabis effects and pain relief which may negatively affect analgesic outcomes. In this cross-sectional survey, we examined whether daily cannabis use frequency was associated with pain severity and interference, quality of life measures relevant to pain (e.g., anxiety and depressive symptoms), and cannabis use preferences (administration routes, cannabinoid ratio). Our analysis included 989 adults who used cannabis every day for chronic pain. Participant use was designated as light, moderate, and heavy (1-2, 3-4, and 5 or more cannabis uses per day, respectively). The sample was also sub-grouped by self-reported medical only use (designated MED, n=531, 54%) vs. medical use concomitant with a past-year history of recreational use (designated MEDREC, n=458, 46%). In the whole sample, increased frequency of use was significantly associated with worse pain intensity and interference, and worse negative affect, although high frequency users also reported improved positive affect. Subgroup analyses showed that these effects were driven by MED participants. Heavy MED participant consumption patterns showed greater preference for smoking, vaporizing, and high THC products. In contrast, light MED participants had greater preference for tinctures and high CBD products. Selection bias, our focus on chronic pain, and our cross-sectional design likely limit the generalizability our results. Our findings suggest that lower daily cannabis use frequency is associated with better clinical profile as well as lower risk cannabis use behaviors among MED participants. Future longitudinal studies are needed to examine how high frequency of cannabis use interacts with potential therapeutic benefits. PERSPECTIVE: Our findings suggest that lower daily cannabis use frequency is associated with better clinical profile as well as safer use behaviors (e.g., preference for CBD and non-inhalation administration routes). These trends highlight the need for developing cannabis use guidelines for clinicians to better protect patients using cannabis.

Learn More >

Unique aspects of clinical trials of invasive therapies for chronic pain.

Learn More >

Latin American Pain Federation position paper on appropriate opioid use in pain management.

Learn More >

Search