I am a
Home I AM A Search Login

Pharmacology/Drug Development

Share this

Inhibitory Actions of Tropeines on the α3 Glycine Receptor Function.

Glycine receptors (GlyRs) are chloride-permeable pentameric ligand-gated ion channels. The inhibitory activity of GlyRs is essential for many physiological processes, such as motor control and respiration. In addition, several pathological states, such as hyperekplexia, epilepsy, and chronic pain, are associated with abnormal glycinergic inhibition. Recent studies have pointed out that positive allosteric modulators targeting the GlyR α3 subunit (α3GlyR) displayed beneficial effects in chronic pain models. Interestingly, previous electrophysiological studies have shown that tropeines, which are a family of synthetic antagonists of the serotonin type 3 receptors (5-HTRs), potentiate the activity of GlyRs conformed by α1 subunits. However, despite its importance as a pharmacological target in chronic pain, it is currently unknown whether the α3GlyR function is modulated by tropeines. Using electrophysiological techniques and molecular docking simulations, here we show that tropeines are inhibitors of the α3GlyR function. Tropisetron, a prototypical tropeine, exerted concentration-dependent inhibitory effects on α3GlyRs at the low micromolar range. In addition, three other tropeines showed similar effects. Single-channel recordings show that tropisetron inhibition is associated with a decrease in the open probability of the ion channel. Molecular docking assays suggest that tropeines preferentially bind to an agonist-free, closed state of the ion channel. The tropeine binding occurs in a discrete pocket around the vicinity of the orthosteric site within the extracellular domain of α3GlyR. Thus, our results describe the pharmacological modulation of tropeines on α3GlyRs. These findings may contribute to the development of GlyR-selective tropeine derivatives for basic and/or clinical applications.

Learn More >

The efficacy of pregabalin for the treatment of neuropathic pain in Japanese subjects with moderate or severe baseline pain.

Although analyses of pooled clinical trial data have reported how international populations respond to pregabalin by baseline neuropathic pain (NeP) severity, no studies have evaluated this specifically in patients from Japan. Thus, this post hoc pooled analysis evaluated the efficacy of pregabalin in Japanese subjects for treating moderate or severe baseline NeP.

Learn More >

ATHENA: A Phase 3, Open-Label Study Of The Safety And Effectiveness Of Oliceridine (TRV130), A G-Protein Selective Agonist At The µ-Opioid Receptor, In Patients With Moderate To Severe Acute Pain Requiring Parenteral Opioid Therapy.

Pain management with conventional opioids can be challenging due to dose-limiting adverse events (AEs), some of which may be related to the simultaneous activation of β-arrestin (a signaling pathway associated with opioid-related AEs) and G-protein pathways. The investigational analgesic oliceridine is a G-protein-selective agonist at the µ-opioid receptor with less recruitment of β-arrestin. The objective of this phase 3, open-label, multi-center study was to evaluate the safety and tolerability, of IV oliceridine for moderate to severe acute pain in a broad, real-world patient population, including postoperative surgical patients and non-surgical patients with painful medical conditions.

Learn More >

LFA-1 antagonist (BIRT377) similarly reverses peripheral neuropathic pain in male and female mice with underlying sex divergent peripheral immune proinflammatory phenotypes.

The majority of preclinical studies investigating aberrant glial-neuroimmune actions underlying neuropathic pain have focused on male rodent models. Recently, studies have shown peripheral immune cells play a more prominent role than glial cells in mediating pathological pain in females. Here, we compared the onset and duration of allodynia in males and females, and the anti-allodynic action of a potentially novel therapeutic drug (BIRT377) that not only antagonizes the action of lymphocyte function-associated antigen-1 (LFA-1) to reduce cell migration in the periphery, but may also directly alter the cellular inflammatory bias.

Learn More >

Brain Structural and Functional Imaging Findings in Medication-Overuse Headache.

This chapter overviews research neuroimaging findings of patients with medication-overuse headache (MOH). Results indicate; (i) correlations between neuropathology and medication-overuse; (ii) changes in brain morphology and cortical function; and (iii) brain recovery subsequent to withdrawal of medication that was overused. Results of this narrative review indicate exacerbated brain structural and functional changes in regions of the pain-matrix and in regions of the mesocortical-limbic circuit in patients with MOH compared to patients with migraine or compared to healthy controls. Modification of brain morphology as well as an association between brain recovery and medication withdrawal suggest that the MOH disease process involves state (brain modification) and trait-like (brain adaptation and recovery) neuromechanisms.

Learn More >

Biomarkers in Migraine Headache: Prognostic and Therapeutic Implications.

Learn More >

TRPV1 channel contributes to remifentanil-induced postoperative hyperalgesia via regulation of NMDA receptor trafficking in dorsal root ganglion.

Remifentanil is widely used in general anesthesia due to its reliability and rapid onset. However, remifentanil-induced postoperative hyperalgesia might be a challenge nowadays. Accumulating evidence suggests that the transient receptor potential vanilloid 1 (TRPV1) was involved in the development of neuropathic pain and hyperalgesia. However, the contribution of TRPV1 in modulating remifentanil-induced postoperative hyperalgesia is still unknown. The aim of this study is the contribution of TRPV1 to the surface expression of -methyl-d-aspartate (NMDA) receptors in remifentanil-induced postoperative hyperalgesia.

Learn More >

Efficacy of gabapentin for the prevention of postherpetic neuralgia in patients with acute herpes zoster: A double blind, randomized controlled trial.

Postherpetic neuralgia (PHN) is the most common complication of herpes zoster (HZ). Previous trials have reported that gabapentin can relieve chronic neuropathic pain, but its effect on prevention of PHN is unclear.

Learn More >

TRPV1 Channel Contributes to the Behavioral Hypersensitivity in a Rat Model of Complex Regional Pain Syndrome Type 1.

Complex regional pain syndrome type 1 (CRPS-I) is a debilitating pain condition that significantly affects life quality of patients. It remains a clinically challenging condition and the mechanisms of CRPS-I have not been fully elucidated. Here, we investigated the involvement of TRPV1, a non-selective cation channel important for integrating various painful stimuli, in an animal model of CRPS-I. A rat model of chronic post-ischemia pain (CPIP) was established to mimic CRPS-I. TRPV1 expression was significantly increased in hind paw tissue and small to medium-sized dorsal root ganglion (DRG) neurons of CPIP rats. CPIP rats showed increased TRPV1 current density and capsaicin responding rate in small-sized nociceptive DRG neurons. Local pharmacological blockage of TRPV1 with the specific antagonist AMG9810, at a dosage that does not produce hyperthermia or affect thermal perception or locomotor activity, effectively attenuated thermal and mechanical hypersensitivity in bilateral hind paws of CPIP rats and reduced the hyperexcitability of DRG neurons induced by CPIP. CPIP rats showed bilateral spinal astrocyte and microglia activations, which were significantly attenuated by AMG9810 treatment. These findings identified an important role of TRPV1 in mediating thermal and mechanical hypersensitivity in a CRPS-I animal model and further suggest local pharmacological blocking TRPV1 may represent an effective approach to ameliorate CRPS-I.

Learn More >

Can Positive Framing Reduce Nocebo Side Effects? Current Evidence and Recommendation for Future Research.

Although critical for informed consent, side effect warnings can contribute directly to poorer patient outcomes because they often induce negative expectations that trigger nocebo side effects. Communication strategies that reduce the development of nocebo side effects whilst maintaining informed consent are therefore of considerable interest. We reviewed theoretical and empirical evidence for the use of framing strategies to achieve this. Framing refers to the way in which information about the likelihood or significance of side effects is presented (e.g., negative frame: 30% experience headache vs. positive frame: 70% will experience headache), with the rationale that positively framing such information could diminish nocebo side effects. Relatively few empirical studies ( = 6) have tested whether framing strategies can reduce nocebo side effects. Of these, four used attribute framing and two message framing. All but one of the studies found a significant framing effect on at least one aspect of side effects (e.g., experience, attribution, threat), suggesting that framing is a promising strategy for reducing nocebo effects. However, our review also revealed some important open questions regarding these types of framing effects, including, the best method of communicating side effects (written, oral, pictorial), optimal statistical presentation (e.g., frequencies vs. percentages), whether framing affects perceived absolute risk of side effects, and what psychological mechanisms underlie framing effects. Future research that addresses these open questions will be vital for understanding the circumstances in which framing are most likely to be effective.

Learn More >

Search