I am a
Home I AM A Search Login

Pharmacology/Drug Development

Share this

Effects of onabotulinumtoxinA treatment in chronic migraine patients with and without daily headache at baseline: results from the COMPEL Study.

OnabotulinumtoxinA is effective in preventing chronic migraine (CM); however, the benefit of onabotulinumtoxinA in patients with CM with daily headache is unknown because these patients are typically excluded from clinical trials. This subanalysis of the COMPEL Study assessed the efficacy and safety of onabotulinumtoxinA in people with CM with and without daily headache.

Learn More >

Guideline recommendations on the pharmacological management of non-specific low back pain in primary care – is there a need to change?

Introduction Analgesic drugs are often prescribed to patients with non-specific low back pain (NSLBP). Recommendations for non-invasive pharmacological management of NSLBP from recent clinical practice guidelines were compared with each other and with the best available evidence on drug efficacy. Areas covered Recommendations concerning opioids, non-steroidal anti-inflammatory drugs (NSAIDs), paracetamol, antidepressants, anticonvulsants and muscle relaxants from national primary care guidelines published within the last 3 years were included in this review. For each pharmacological treatment, the most recent systematic review was included as the best available evidence on drug efficacy and common adverse effects were summarized. Expert opinion Although differences exist between guidelines, publications are universally moving away from pharmacotherapy due to the limited efficacy and the risk of adverse effects. NSAIDs have replaced paracetamol as the first choice analgesics for NSLBP in many guidelines. Opioids are generally considered to be a last resort, but opioid prescriptions have been increasing over recent years. Upcoming guideline updates should explicitly shift their focus from pain to function and from pharmacotherapy to non-pharmacological treatments; patient education is important to make sure NSLBP patients accept these changes. To improve the quality of NSLBP care, the evidence-practice gap should be closed through guideline implementation strategies.

Learn More >

A C-terminal cysteine residue is required for peptide-based inhibition of the NGF/TrkA interaction at nM concentrations: implications for peptide-based analgesics.

Inhibition of the NGF/TrkA interaction presents an interesting alternative to the use of non-steroidal anti-inflammatories and/or opioids for the control of inflammatory, chronic and neuropathic pain. Most prominent of the current approaches to this therapy is the antibody Tanezumab, which is a late-stage development humanized monoclonal antibody that targets NGF. We sought to determine whether peptides might similarly inhibit the NGF/TrkA interaction and so serve as future therapeutic leads. Starting from two peptides that inhibit the NGF/TrkA interaction, we sought to eliminate a cysteine residue close to the C-terminal of both sequences, by an approach of mutagenic analysis and saturation mutagenesis of mutable residues. Elimination of cysteine from a therapeutic lead is desirable to circumvent manufacturing difficulties resulting from oxidation. Our analyses determined that the cysteine residue is not required for NGF binding, but is essential for inhibition of the NGF/TrkA interaction at pharmacologically relevant peptide concentrations. We conclude that a cysteine residue is required within potential peptide-based therapeutic leads and hypothesise that these peptides likely act as dimers, mirroring the dimeric structure of the TrkA receptor.

Learn More >

Adherence to Consolidated Standards of Reporting Trials (CONSORT) Guidelines for Reporting Safety Outcomes in Trials of Cannabinoids for Chronic Pain: Protocol for a Systematic Review.

Chronic pain affects a significant proportion of the population and presents a major challenge to clinicians and pain specialists. Despite the availability of pharmacologic treatment options such as opioids, many patients continue to experience persistent pain. Cannabinoids present an alternative option with some data on efficacy; however, to date, a systematic review of adverse events (AEs) assessment and reporting in randomized clinical trials (RCTs) involving cannabinoids has not been performed. As a result, it is unclear whether a clear profile of cannabinoid-associated AEs has been accurately detailed in the literature. As cannabinoids are likely to become readily available for patients in the near future, it is important to study how well AEs have been reported in trials so that the safety profile of cannabinoids can be better understood.

Learn More >

Structure of a Signaling Cannabinoid Receptor 1-G Protein Complex.

Cannabis elicits its mood-enhancing and analgesic effects through the cannabinoid receptor 1 (CB1), a G protein-coupled receptor (GPCR) that signals primarily through the adenylyl cyclase-inhibiting heterotrimeric G protein G. Activation of CB1-G signaling pathways holds potential for treating a number of neurological disorders and is thus crucial to understand the mechanism of G activation by CB1. Here, we present the structure of the CB1-G signaling complex bound to the highly potent agonist MDMB-Fubinaca (FUB), a recently emerged illicit synthetic cannabinoid infused in street drugs that have been associated with numerous overdoses and fatalities. The structure illustrates how FUB stabilizes the receptor in an active state to facilitate nucleotide exchange in G. The results compose the structural framework to explain CB1 activation by different classes of ligands and provide insights into the G protein coupling and selectivity mechanisms adopted by the receptor.

Learn More >

Characterization of drug binding within the HCN1 channel pore.

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels mediate rhythmic electrical activity of cardiac pacemaker cells, and in neurons play important roles in setting resting membrane potentials, dendritic integration, neuronal pacemaking, and establishing action potential threshold. Block of HCN channels slows the heart rate and is currently used to treat angina. However, HCN block also provides a promising approach to the treatment of neuronal disorders including epilepsy and neuropathic pain. While several molecules that block HCN channels have been identified, including clonidine and its derivative alinidine, lidocaine, mepivacaine, bupivacaine, ZD7288, ivabradine, zatebradine, and cilobradine, their low affinity and lack of specificity prevents wide-spread use. Different studies suggest that the binding sites of these inhibitors are located in the inner vestibule of HCN channels, but the molecular details of their binding remain unknown. We used computational docking experiments to assess the binding sites and mode of binding of these inhibitors against the recently solved atomic structure of human HCN1 channels, and a homology model of the open pore derived from a closely related CNG channel. We identify a possible hydrophobic groove in the pore cavity that plays an important role in conformationally restricting the location and orientation of drugs bound to the inner vestibule. Our results also help explain the molecular basis of the low-affinity binding of these inhibitors, paving the way for the development of higher affinity molecules.

Learn More >

Evaluating analgesic efficacy and administration route following craniotomy in mice using the grimace scale.

Most research laboratories abide by guidelines and mandates set by their research institution regarding the administration of analgesics to control pain during the postoperative period. Unfortunately, measuring pain originating from the head is difficult, making adequate decisions regarding pain control following stereotaxic surgery problematic. In addition, most postsurgical analgesia protocols require multiple injections over several days, which may cause stress and distress during a critical recovery period. Here we sought to (1) assess the degree of postoperative pain following craniotomy in mice, (2) compare the efficacy of three common rodent analgesics (carprofen, meloxicam and buprenorphine) for reducing this pain and (3) determine whether the route of administration (injected or self-administered through the drinking supply) influenced pain relief post-craniotomy. Using the mouse grimace scale (MGS), we found that injectable analgesics were significantly more effective at relieving post-craniotomy pain, however, both routes of administration decreased pain scores in the first 24 h postsurgery. Specifically, buprenorphine administered independently of administration route was the most effective at reducing MGS scores, however, female mice showed greater sensitivity to carprofen when administered through the water supply. Although it is necessary to provide laboratory animals with analgesics after an invasive procedure, there remains a gap in the literature regarding the degree of craniotomy-related pain in rodents and the efficacy of alternative routes of administration. Our study highlights the limitations of administering drugs through the drinking supply, even at doses that are considered to be higher than those currently recommended by most research institutions for treating pain of mild to moderate severity.

Learn More >

Pregabalin for neuropathic pain in adults.

This review updates part of an earlier Cochrane Review titled "Pregabalin for acute and chronic pain in adults", and considers only neuropathic pain (pain from damage to nervous tissue). Antiepileptic drugs have long been used in pain management. Pregabalin is an antiepileptic drug used in management of chronic pain conditions.

Learn More >

Benefits and harms of pregabalin in the management of neuropathic pain: a rapid review and meta-analysis of randomised clinical trials.

To assess the benefits and harms of pregabalin in the management of neuropathic pain.

Learn More >

Synapse-specific Opioid Modulation of Thalamo-cortico-striatal Circuits.

Learn More >

Search