I am a
Home I AM A Search Login

Pharmacology/Drug Development

Share this

Minocycline Relieves Depressive-Like Behaviors in Rats With Bone Cancer Pain by Inhibiting Microglia Activation in Hippocampus.

Pain and depression are highly prevalent symptoms in cancer patients. They tend to occur simultaneously and affect each other and share biological pathways and neurotransmitters. In this study, we investigated the roles of microglia in the hippocampus in the comorbidity of bone cancer pain and depressive-like behaviors in an animal model of bone cancer pain.

Learn More >

Efficacy and safety of a monthly buprenorphine depot injection for opioid use disorder: a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial.

RBP-6000, referred to as BUP-XR (extended-release buprenorphine), is a subcutaneously injected, monthly buprenorphine treatment for opioid use disorder. BUP-XR provides sustained buprenorphine plasma concentrations to block drug-liking of abused opioids over the entire monthly dosing period, while controlling withdrawal and craving symptoms. Administration of BUP-XR in a health-care setting also mitigates abuse, misuse, diversion, and unintentional exposure. We aimed to investigate the efficacy of different BUP-XR dosing regimens in participants with opioid use disorder.

Learn More >

Combining naproxen and a dual amylin and calcitonin receptor agonist improves pain and structural outcomes in the collagen-induced arthritis rat model.

Pain is a debilitating symptom of rheumatoid arthritis (RA), caused by joint inflammation and cartilage and bone destruction. Nonsteroidal anti-inflammatory drugs (NSAIDs) are used to treat pain and inflammation in RA, but are not disease-modifying and do not prevent joint destruction when administered alone. KBPs (Key Bioscience peptides) are synthetic peptides based on salmon calcitonin and are expected to inhibit bone resorption and to be chondroprotective. In this study, we investigated if combining a standard of care NSAID (naproxen) with a KBP resulted in improvement in pain scores, as well as disease activity and structural damage in a rat model of RA.

Learn More >

Orally consumed cannabinoids provide long-lasting relief of allodynia in a mouse model of chronic neuropathic pain.

Learn More >

Rostral and Caudal Ventral Tegmental Area GABAergic Inputs to Different Dorsal Raphe Neurons Participate in Opioid Dependence.

Both the ventral tegmental area (VTA) and dorsal raphe nucleus (DRN) are involved in affective control and reward-related behaviors. Moreover, the neuronal activities of the VTA and DRN are modulated by opioids. However, the precise circuits from the VTA to DRN and how opioids modulate these circuits remain unknown. Here, we found that neurons projecting from the VTA to DRN are primarily GABAergic. Rostral VTA (rVTA) GABAergic neurons preferentially innervate DRN GABAergic neurons, thus disinhibiting DRN serotonergic neurons. Optogenetic activation of this circuit induces aversion. In contrast, caudal VTA (cVTA) GABAergic neurons mainly target DRN serotonergic neurons, and activation of this circuit promotes reward. Importantly, μ-opioid receptors (MOPs) are selectively expressed at rVTA→DRN GABAergic synapses, and morphine depresses the synaptic transmission. Chronically elevating the activity of the rVTA→DRN pathway specifically interrupts morphine-induced conditioned place preference. This opioid-modulated inhibitory circuit may yield insights into morphine reward and dependence pathogenesis.

Learn More >

A critical evaluation of TRPA1-mediated locomotor behavior in zebrafish as a screening tool for novel anti-nociceptive drug discovery.

Current medications inadequately treat the symptoms of chronic pain experienced by over 50 million people in the United States, and may come with substantial adverse effects signifying the need to find novel treatments. One novel therapeutic target is the Transient Receptor Potential A1 channel (TRPA1), an ion channel that mediates nociception through calcium influx of sensory neurons. Drug discovery still relies heavily on animal models, including zebrafish, a species in which TRPA1 activation produces hyperlocomotion. Here, we investigated if this hyperlocomotion follows zebrafish TRPA1 pharmacology and evaluated the strengths and limitations of using TRPA1-mediated hyperlocomotion as potential preclinical screening tool for drug discovery. To support face validity of the model, we pharmacologically characterized mouse and zebrafish TRPA1 in transfected HEK293 cells using calcium assays as well as in vivo. TRPA1 agonists and antagonists respectively activated or blocked TRPA1 activity in HEK293 cells, mice, and zebrafish in a dose-dependent manner. However, our results revealed complexities including partial agonist activity of TRPA1 antagonists, bidirectional locomotor activity, receptor desensitization, and off-target effects. We propose that TRPA1-mediated hyperlocomotion in zebrafish larvae has the potential to be used as in vivo screening tool for novel anti-nociceptive drugs but requires careful evaluation of the TRPA1 pharmacology.

Learn More >

Assessment of the FDA Risk Evaluation and Mitigation Strategy for Transmucosal Immediate-Release Fentanyl Products.

Transmucosal immediate-release fentanyls (TIRFs), indicated solely for breakthrough cancer pain in opioid-tolerant patients, are subject to a US Food and Drug Administration (FDA) Risk Evaluation and Mitigation Strategy (REMS) to prevent them from being prescribed inappropriately.

Learn More >

Biomarker Analysis of Orally Dosed, Dual Active, Matrix Metalloproteinase (MMP)-2 and MMP-9 Inhibitor, AQU-118, in the Spinal Nerve Ligation (SNL) Rat Model of Neuropathic Pain.

There is an unmet medical need for the development of non-addicting pain therapeutics with enhanced efficacy and tolerability. The current study examined the effects of AQU-118, an orally active inhibitor of metalloproteinase-2 (MMP-2) and MMP-9, in the spinal nerve ligation (SNL) rat model of neuropathic pain. Mechanical allodynia and the levels of various biomarkers were examined within the dorsal root ganglion (DRG) before and after oral dosing with AQU-118. The rats that received the SNL surgery exhibited significant mechanical allodynia as compared to sham controls. Animals received either vehicle, positive control (gabapentin), or AQU-118. After SNL surgery, the dorsal root ganglion (DRG) of those rats dosed with vehicle had elevated messenger RNA (mRNA) expression levels for MMP-2, IL1-β & IL-6 and elevated protein levels for caspase-3 while exhibiting decreased protein levels for myelin basic protein (MBP) & active IL-β as compared to sham controls. Rats orally dosed with AQU-118 exhibited significantly reduced mechanical allodynia and decreased levels of caspase-3 in the DRG as compared to vehicle controls. Results demonstrate that oral dosing with the dual active, MMP-2/-9 inhibitor, AQU-118, attenuated mechanical allodynia while at the same time significantly reduced the levels of caspase-3 in the DRG.

Learn More >

A new painkiller nanomedicine to bypass the blood-brain barrier and the use of morphine.

Learn More >

CGRP-based Migraine Therapeutics: How Might They Work, Why So Safe, and What Next?

Migraine is a debilitating neurological condition that involves the neuropeptide calcitonin gene-related peptide (CGRP). An exciting development is the recent FDA approval of the first in an emerging class of CGRP-targeted drugs designed to prevent migraine. Yet despite this efficacy, there are some fundamental unanswered questions, such as and CGRP works in migraine. Preclinical data suggest that CGRP acts via both peripheral and central mechanisms. The relevance of peripheral sites is highlighted by the clinical efficacy of CGRP-blocking antibodies, even though they do not appreciably cross the blood-brain barrier. The most likely sites of action are within the dura and trigeminal ganglia. Furthermore, it would be foolish to ignore perivascular actions in the dura since CGRP is the most potent vasodilatory peptide. Ultimately, the consequence of blocking CGRP or its receptor is reduced peripheral neural sensitization. Underlying their efficacy is the question of the antibodies have such an excellent safety profile so far. This may be due to the presence of a second CGRP receptor and vesicular release of a large bolus of peptides. Finally, despite the promise of these drugs, there are unmet gaps because they do not work for all patients; so ? We can expect advances on several fronts, including CGRP receptor structures that may help development of centrally-acting antagonists, combinatorial treatments that integrate other therapies, and development of drugs that target other neuropeptides. This is truly an exciting time for CGRP and the migraine field with many more discoveries on the horizon.

Learn More >

Search