I am a
Home I AM A Search Login

Pharmacology/Drug Development

Share this

Morphine Antinociception Restored by Use of Methadone in the Morphine-Resistant Inflammatory Pain State.

The antinociceptive effect of methadone in the morphine-resistant inflammatory pain state was described in the paw-withdrawal test using the complete Freund's adjuvant (CFA)-induced mouse inflammatory pain model. After intraplantar (i.pl.) injection of CFA, thermal hyperalgesia was observed in the ipsilateral paw. The antinociceptive effects of subcutaneous (s.c.) injection of morphine, fentanyl, and oxycodone against thermal hyperalgesia in the inflammatory pain state were reduced in the ipsilateral paw 7 days after CFA pretreatment. On the contrary, the antinociceptive effect of s.c. injection of methadone was maintained in the ipsilateral paw 7 days after CFA pretreatment. The suppressed morphine antinociception in the CFA model mice was bilaterally restored following s.c. treatment with methadone 20 min prior to or 3 days after CFA pretreatment. The suppressed morphine antinociception was also bilaterally restored by intraperitoneal treatment with MK-801 30 min prior to CFA pretreatment; however, the s.c. injection of morphine 30 min prior to CFA pretreatment failed to restore the suppressed morphine antinociception in the CFA model mice. The expression level of mRNA for µ-opioid receptors 7 days after i.pl. pretreatment was not significantly changed by i.pl. pretreatment with CFA or s.c. pretreatment with methadone. In conclusion, methadone is extremely effective against thermal hyperalgesia in the morphine-resistant inflammatory pain state, and restores suppressed morphine antinociception in the inflammatory pain state without altering the expression level of mRNA for µ-opioid receptors.

Learn More >

Lack of association between angiotensin-converting enzyme inhibitors and angiotensin receptor blockers and pain improvement in patients with oral cancer.

There is a growing body of literature implicating angiotensin II in the modulation of tumour-associated inflammation and pain. However, the impact of angiotensin-converting enzyme inhibitors (ACEis) and angiotensin II receptor blockers (ARBs) on pain and inflammation has not yet been studied in oral cancers. The objective is to investigate the role of ACEi and ARB pharmacotherapy on preoperative pain and inflammatory biomarkers, neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR) and monocyte-to-lymphocyte ratio (MLR), in patients with oral cancer.

Learn More >

Controlling the “Opioid Epidemic”: A Novel Chemical Entity (NCE) to Reduce or Supplant Opiate Use for Chronic Pain.

We report on the ongoing project "A Novel Therapeutic to Ameliorate Chronic Pain and Reduce Opiate Use." Over 100 million adults in the U.S. suffer from intermittent or constant chronic pain, and chronic pain affects at least 10% of the world's population. The primary pharmaceuticals for treatment of chronic pain have been natural or synthetic opioids and the use of opioids for pain treatment has resulted in what has been called an "epidemic" of opioid abuse, addiction and lethal overdoses. We have, through a process of rational drug design, generated a novel chemical entity (NCE) and have given it the name Kindolor. Kindolor is a non-opiate, non-addicting molecule that was developed specifically to simultaneously control the aberrant activity of three targets on the peripheral sensory system that are integral in the development and propagation of chronic pain. In our initial preclinical studies, we demonstrated the efficacy of Kindolor to reduce or eliminate chronic pain in five animal models. The overall goal of the project is to complete the investigational new drug (IND)-enabling preclinical studies of Kindolor, and once IND approval is gained, we will proceed to the clinical Phase Ia and 1b safety studies and a Phase 2a efficacy study. The work is in its second year, and the present report describes progress toward our overall goal of bringing our compound to a full Phase 2 ready stage.

Learn More >

Calcitonin gene-related peptide (CGRP)-targeted therapies as preventive and acute treatments for migraine-The monoclonal antibodies and gepants.

Calcitonin Gene-Related Peptide (CGRP) plays a pivotal role in migraine pathophysiology. Two types of CGRP function-blocking modalities, monoclonal antibodies, and small molecules (gepants), have been developed to target the CGRP ligands and CGRP receptors. Four CGRP monoclonal antibodies have received FDA approval for the prevention of migraine: erenumab, fremanezumab, galcanezumab, and eptinezumab. Two gepants have been approved by the FDA for the acute treatment of migraine: ubrogepant and rimegepant. Multiple clinical trials of the CGRP monoclonal antibodies and gepants, and now some open-label long-term extension data, established their efficacy, safety, and tolerability. In this chapter, we summarize the major clinical trials, pharmacokinetic insights, safety and tolerability profiles, and real-world data (if available) of the CGRP monoclonal antibodies and gepants.

Learn More >

The Efficacy of Nerve Growth Factor Antibody for the Treatment of Osteoarthritis Pain and Chronic Low-Back Pain: A Meta-Analysis.

Nerve growth factor (NGF) plays a crucial role in pain modulation and is being considered as a new therapeutic target for pain therapy. The purpose of this meta-analysis was to study the efficacy of anti-NGF antibodies for the treatment of osteoarthritis pain and chronic low-back pain, and to provide evidence and direction for further research and practice.

Learn More >

Machine learning approach to predict medication overuse in migraine patients.

Machine learning (ML) is largely used to develop automatic predictors in migraine classification but automatic predictors for medication overuse (MO) in migraine are still in their infancy. Thus, to understand the benefits of ML in MO prediction, we explored an automated predictor to estimate MO risk in migraine. To achieve this objective, a study was designed to analyze the performance of a customized ML-based decision support system that combines support vector machines and Random Optimization (RO-MO). We used RO-MO to extract prognostic information from demographic, clinical and biochemical data. Using a dataset of 777 consecutive migraine patients we derived a set of predictors with discriminatory power for MO higher than that observed for baseline SVM. The best four were incorporated into the final RO-MO decision support system and risk evaluation on a five-level stratification was performed. ROC analysis resulted in a c-statistic of 0.83 with a sensitivity and specificity of 0.69 and 0.87, respectively, and an accuracy of 0.87 when MO was predicted by at least three RO-MO models. Logistic regression analysis confirmed that the derived RO-MO system could effectively predict MO with ORs of 5.7 and 21.0 for patients classified as probably (3 predictors positive), or definitely at risk of MO (4 predictors positive), respectively. In conclusion, a combination of ML and RO – taking into consideration clinical/biochemical features, drug exposure and lifestyle – might represent a valuable approach to MO prediction in migraine and holds the potential for improving model precision through weighting the relative importance of attributes.

Learn More >

Nerve Growth Factor Signaling and Its Contribution to Pain.

Nerve growth factor (NGF) is a neurotrophic protein essential for the growth, differentiation, and survival of sympathetic and sensory afferent neurons during development. A substantial body of evidence, based on both animal and human studies, demonstrates that NGF plays a pivotal role in modulation of nociception in adulthood. This has spurred development of a variety of novel analgesics that target the NGF signaling pathway. Here, we present a narrative review designed to summarize how NGF receptor activation and downstream signaling alters nociception through direct sensitization of nociceptors at the site of injury and changes in gene expression in the dorsal root ganglion that collectively increase nociceptive signaling from the periphery to the central nervous system. This review illustrates that NGF has a well-known and multifunctional role in nociceptive processing, although the precise signaling pathways downstream of NGF receptor activation that mediate nociception are complex and not completely understood. Additionally, much of the existing knowledge derives from studies performed in animal models and may not accurately represent the human condition. However, available data establish a role for NGF in the modulation of nociception through effects on the release of inflammatory mediators, nociceptive ion channel/receptor activity, nociceptive gene expression, and local neuronal sprouting. The role of NGF in nociception and the generation and/or maintenance of chronic pain has led to it becoming a novel and attractive target of pain therapeutics for the treatment of chronic pain conditions.

Learn More >

The Rise and Fall of Kappa-Opioid Receptors in Drug Abuse Research.

Substance use disorders represent a global public health issue. This mental health disorder is hypothesized to result from neurobiological changes as a result of chronic drug exposure and clinically manifests as inappropriate behavioral allocation toward the procurement and use of the abused substance and away from other behaviors maintained by more adaptive nondrug reinforcers (e.g., social relationships, work). The dynorphin/kappa-opioid receptor (KOR) is one receptor system that has been altered following chronic exposure to drugs of abuse (e.g., cocaine, opioids, alcohol) in both laboratory animals and humans, implicating the dynorphin/KOR system in the expression, mechanisms, and treatment of substance use disorders. KOR antagonists have reduced drug self-administration in laboratory animals under certain experimental conditions, but not others. Recently, several human laboratory and clinical trials have evaluated the effectiveness of KOR antagonists as candidate pharmacotherapies for cocaine or tobacco use disorder to test hypotheses generated from preclinical studies. KOR antagonists failed to significantly alter drug use metrics in humans suggesting translational discordance between some preclinical drug self-administration studies and consistent with other preclinical drug self-administration studies that provide concurrent access to an alternative nondrug reinforcer (e.g., food). The implications of this translational discordance and future directions for examining the therapeutic potential of KOR agonists or antagonists as candidate substance use disorder pharmacotherapies are discussed.

Learn More >

PACAP27 induces migraine-like attacks in migraine patients.

Pituitary adenylate cyclase-activating polypeptide (PACAP) is found in two functional isoforms, namely PACAP38 and PACAP27. The migraine-inducing properties of PACAP38 are well studied. However, it is not known whether the lesser-known and under-studied protein isoform, PACAP27, can also induce migraine attacks. Here, we studied the effect of human PACAP27 infusion on induction of migraine in a provocation model.

Learn More >

Lasmiditan for the acute treatment of migraine: Subgroup analyses by prior response to triptans.

Lasmiditan demonstrated superiority to placebo in the acute treatment of migraine in adults with moderate/severe migraine disability in two similarly designed Phase 3 trials, SAMURAI and SPARTAN. Post-hoc integrated analyses evaluated the efficacy of lasmiditan in patients who reported a good or insufficient response to triptans and in those who were triptan naïve.

Learn More >

Search