I am a
Home I AM A Search Login

Pharmacology/Drug Development

Share this

Erenumab for the preventive treatment of chronic migraine complicated with medication overuse headache: an observational, retrospective, 12-month real-life study.

Erenumab is a monoclonal antibody blocking the calcitonin gene-related peptide receptor, which has been approved for the preventive treatment of chronic migraine (CM). The aim of this study was to explore the safety and effectiveness of erenumab in patients suffering from CM and medication overuse headache (MOH) in a real-life setting, up to 1 year.

Learn More >

Randomized, controlled trial of lasmiditan over four migraine attacks: Findings from the CENTURION study.

We present findings from the multicenter, double-blind Phase 3 study, CENTURION. This study was designed to assess the efficacy of and consistency of response to lasmiditan in the acute treatment of migraine across four attacks.

Learn More >

Design, Structural Optimization, and Characterization of the First Selective Macrocyclic Neurotensin Receptor Type 2 Non-opioid Analgesic.

Neurotensin (NT) receptor type 2 (NTS2) represents an attractive target for the development of new NT-based analgesics. Here, we report the synthesis and functional characterization of the first constrained NTS2-selective macrocyclic NT analog. While most chemical optimization studies rely on the NT(8-13) fragment, we focused on NT(7-12) as a scaffold to design NTS2-selective macrocyclic peptides. Replacement of Ile by Leu, and Pro/Pro by allylglycine residues followed by cyclization via ring-closing metathesis led to macrocycle , which exhibits good affinity for NTS2 (50 nM), high selectivity over NTS1 (>100 μM), and improved stability compared to NT(8-13). profiling in rats reveals that macrocycle produces potent analgesia in three distinct rodent pain models, without causing the undesired effects associated with NTS1 activation. We further provide evidence of its non-opioid antinociceptive activity, therefore highlighting the strong therapeutic potential of NTS2-selective analogs for the management of acute and chronic pain.

Learn More >

Efficacy of ketamine in relieving neuropathic pain: a systematic review and meta-analysis of animal studies.

In humans, proof of long-term efficacy of ketamine treatment in neuropathic pain is lacking. To improve our understanding of ketamine behavior under various administration conditions, we performed a systematic review and meta-analyses of controlled studies on the efficacy of ketamine in mice and rats with a disease model of nerve injury on relief of allodynia. Searches in PubMed and EMBASE identified 31 unique studies. Four meta-analyses were conducted. The first analysis included 19 comparisons on a single ketamine dose and measurement of effect within 3 hours of dosing and showed an appreciable effect (standardized mean difference 1.6, 95% confidence interval 1.1-2.1). Subgroup analyses showed no effect of species, administration route, or dose. A single administration was insufficient to sustain relief of allodynia at 24 or 72 hours after dosing, as observed in our second analysis (7 comparisons) with similar effects in ketamine-treated and control animals. Chronic ketamine administration (9 comparisons) caused profound relief of allodynia when tested during ketamine exposure (effect size 5.1, 3.7-6.5). The final analysis (6 comparisons) showed that chronic administration caused a slow loss of relief of allodynia with 70% loss of effect 24 days after end of treatment. No subgroups analyses were possible in the last 3 meta-analyses due to small group sizes. These results indicate long-term ketamine anti-allodynic effects after chronic exposure (>3 days) but not after a single administration. Given several limitations, extrapolation of the animal data to the human condition is tenuous.

Learn More >

Trends in peptide drug discovery.

Since the introduction of insulin almost a century ago, more than 80 peptide drugs have reached the market for a wide range of diseases, including diabetes, cancer, osteoporosis, multiple sclerosis, HIV infection and chronic pain. In this Perspective, we summarize key trends in peptide drug discovery and development, covering the early efforts focused on human hormones, elegant medicinal chemistry and rational design strategies, peptide drugs derived from nature, and major breakthroughs in molecular biology and peptide chemistry that continue to advance the field. We emphasize lessons from earlier approaches that are still relevant today as well as emerging strategies such as integrated venomics and peptide-display libraries that create new avenues for peptide drug discovery. We also discuss the pharmaceutical landscape in which peptide drugs could be particularly valuable and analyse the challenges that need to be addressed for them to reach their full potential.

Learn More >

Comprehensive Review of Topical Analgesics for Chronic Pain.

Topical analgesics are a non-opioid option for the treatment of chronic pain conditions including neuropathic pain, musculoskeletal pain, and osteoarthritis. There are many topical medications available; however their efficacy is variable. This article reviews the various topical analgesics, their mechanisms of action, and their efficacy.

Learn More >

Injectable Capsaicin for the Management of Pain Due to Osteoarthritis.

Capsaicin is a potent agonist of the TRPV1 channel, a transduction channel that is highly expressed in nociceptive fibers (pain fibers) throughout the peripheral nervous system. Given the importance of TRPV1 as one of several transduction channels in nociceptive fibers, much research has been focused on the potential therapeutic benefits of using TRPV1 antagonists for the management of pain. However, an antagonist has two limitations. First, an antagonist in principle generally only affects one receptor. Secondly, most antagonists must have an ongoing presence on the receptor to have an effect. Capsaicin overcomes both liabilities by disrupting peripheral terminals of nociceptive fibers that express TRPV1, and thereby affects all of the potential means of activating that pain fiber (not just TRPV1 function). This disruptive effect is dependent on the dose and can occur within minutes. Thus, unlike a typical receptor antagonist, continued bioavailability at the level of the receptor is not necessary. By disrupting the entire terminal of the TRPV1-expressing nociceptive fiber, capsaicin blocks all the activation mechanisms within that fiber, and not just TRPV1 function. Topical capsaicin, an FDA approved treatment for neuropathic pain, addresses pain from abnormal nociceptor activity in the superficial layers of the skin. Effects after a single administration are evident over a period of weeks to months, but in time are fully reversible. This review focuses on the rationale for using capsaicin by injection for painful conditions such as osteoarthritis (OA) and provides an update on studies completed to date.

Learn More >

Pharmacological restoration of anti-nociceptive functions in the prefrontal cortex relieves chronic pain.

Chronic pain affects one in four adults, and effective non-sedating and non-addictive treatments are urgently needed. Chronic pain causes maladaptive changes in the cerebral cortex, which can lead to impaired endogenous nociceptive processing. However, it is not yet clear if drugs that restore endogenous cortical regulation could provide an effective therapeutic strategy for chronic pain. Here, we studied the nociceptive response of neurons in the prelimbic region of the prefrontal cortex (PL-PFC) in freely behaving rats using a spared nerve injury (SNI) model of chronic pain, and the impact of AMPAkines, a class of drugs that increase central glutamate signaling, on such response. We found that neurons in the PL-PFC increase their firing rates in response to noxious stimulations; chronic neuropathic pain, however, suppressed this important cortical pain response. Meanwhile, CX546, a well-known AMPAkine, restored the anti-nociceptive response of PL-PFC neurons in the chronic pain condition. In addition, both systemic administration and direct delivery of CX546 into the PL-PFC inhibited symptoms of chronic pain, whereas optogenetic inactivation of the PFC neurons or administration of AMPA receptor antagonists in the PL-PFC blocked the anti-nociceptive effects of CX546. These results indicate that restoration of the endogenous anti-nociceptive functions in the PL-PFC by pharmacological agents such as AMPAkines constitutes a successful strategy to treat chronic neuropathic pain.

Learn More >

The efficacy of gabapentin combined with opioids for neuropathic cancer pain: a meta-analysis.

More than 30% of cancer patients experience neuropathic pain. Opioids, as standard pain-relief agents, cannot achieve satisfactory outcomes to treat neuropathic cancer pain due to drug resistance and side effects. Meanwhile, gabapentin, a third-generation anticonvulsant drug, has great potential in providing relief for neuropathic cancer pain. However, there is currently no sufficient evidence to support the efficacy of a combination of gabapentin and opioids in ameliorating neuropathic cancer pain. Hence, the aim of the present study was to explore the analgesic efficacy of gabapentin combined with opioids in treating neuropathic cancer pain.

Learn More >

Gabapentin reduces painful bladder hypersensitivity in rats with lipopolysaccharide-induced chronic cystitis.

Although interstitial cystitis/bladder pain syndrome (IC/BPS) is a chronic condition causing bladder pain and urinary symptoms, effective treatments have not been established. The aim of this study was to adapt a chronic cystitis model in rats using lipopolysaccharide (LPS), which reflects IC/BPS pathology, and characterize the model's histological and behavioral effects. Furthermore, we investigated the effect of an α δ subunit ligand, gabapentin (GBP), on bladder hypersensitivity of rats with chronic cystitis. Cystitis models were created by repeated intravesical injections of LPS. In the histological examination, the LPS-injected group had greater inflammatory response, fibrosis, and abnormally thick re-epithelialization. In the LPS-injected group, LPS prompted hyperalgesia in both the lower abdomen and hind paw regions after day 1 of the first injection compared with the saline-injected controls, without any recovery for 21 days at least. During cystometry, the LPS-injected group showed bladder hyperactivity at all times. Systemic administration of GBP reduced cystitis-related pain due to chronic inflammation and reduced the increased frequency of voiding in the LPS-injected group. These results suggest that repeated intravesical injections of LPS induce long-lasting bladder inflammation, pain, and overactivity in rats, while GBP is effective in the management of those symptoms in this chronic cystitis model. The current study identifies a relatively simple method to develop an animal model for chronic cystitis and provides evidence that GBP may be an effective treatment option for patients with IC/BPS.

Learn More >

Search