I am a
Home I AM A Search Login

Pharmacology/Drug Development

Share this

CGRP measurements in human plasma – a methodological study.

Calcitonin gene-related peptide plasma levels have frequently been determined as a biomarker for primary headaches. However, published data is often inconsistent resulting from different methods that are not precisely described in most studies.

Learn More >

Benefit-Risk Assessment of Galcanezumab Versus Placebo for the Treatment of Episodic and Chronic Migraine Using the Metrics of Number Needed to Treat and Number Needed to Harm.

Subcutaneous galcanezumab was an effective, well-tolerated preventive treatment for adults with episodic (EM) or chronic migraine (CM) in 4 phase 3 randomized controlled trials: EVOLVE-1, EVOLVE-2, REGAIN, and CONQUER. Number needed to treat (NNT) and to harm (NNH) are metrics of effect size used to evaluate benefit-risk profiles. This study evaluated NNT, NNH, and benefit-risk profiles (measured as likelihood to be helped or harmed, LHH) of galcanezumab 120 mg versus placebo in patients with EM or CM.

Learn More >

Lithocholic Acid Activates Mas-Related G Protein-Coupled Receptors, Contributing to Itch in Mice.

The present study focused on lithocholic acid (LCA), a secondary bile acid that contributes to cholestatic pruritus. Although recent studies have found that LCA acts on MAS-related G protein-coupled receptor family member X4 (MRGPRX4) in humans, it is unclear which subtypes of MRGPRs are activated by LCA in mice since there is no precise ortholog of human MRGPRX4 in the mouse genome. Using calcium imaging, we found that LCA could activate mouse Mrgpra1 when transiently expressed in HEK293T cells. Moreover, LCA similarly activates mouse Mrgprb2. Importantly, LCA-induced responses showed dose-dependent effects through Mrgpra1 and Mrgprb2. Moreover, treatment with QWF (an antagonist of Mrgpra1 and Mrgprb2), YM254890 (Gα inhibitor), and U73122 (an inhibitor of phospholipase C) significantly suppressed the LCA-induced responses, implying that the LCA-induced responses are indeed mediated by Mrgpra1 and Mrgprb2. Furthermore, LCA activated primary cultures of mouse sensory neurons and peritoneal mast cells, suggesting that Mrgpra1 and Mrgprb2 contribute to LCA-induced pruritus. However, acute injection of LCA did not induce noticeable differences in scratching behavior, implying that the pruritogenic role of LCA may be marginal in non-cholestatic conditions. In summary, the present study identified for the first time that LCA can activate Mrgpra1 and Mrgprb2. The current findings provide further insight into the similarities and differences between human and mouse MRGPR families, paving a way to understand the complex roles of these pruriceptors.

Learn More >

Emerging drugs for the prevention of migraine.

Migraine is a common and disabling neurological disorder. A greater understanding of the pathophysiological mechanisms underlying migraine has led to the availability of specific new drugs targeting calcitonin gene-related peptide (CGRP). The success of the CGRP inhibitors validates research efforts into migraine-specific therapies.

Learn More >

CGRP and migraine; from bench to bedside.

Migraine treatment has reached a new era with the development of drugs that target the trigeminal neuropeptide calcitonin gene-related peptide (CGRP) or its receptor. The CGRP related therapies offer considerable improvements over existing drugs as they are the first to be designed to act on the trigeminal pain system, more specific and with few adverse events. Small molecule CGRP receptor antagonists, such as rimegepant and ubrogepant, are effective for the acute treatment of migraine headache. In contrast, monoclonal antibodies against CGRP or the CGRP receptor are beneficial for the prophylactic treatments in chronic migraine. Here I will provide a historical overview of the long path that led to their successful development. In addition, I will discuss aspects on the biology of CGRP signalling, the role of CGRP in migraine headache, the efficacy of CGRP targeted treatment, and synthesize what currently is known about the role of CGRP in the trigeminovascular system.

Learn More >

Loss of SUR1 subtype K channels alters antinociception and locomotor activity after opioid administration.

Opioid signaling can occur through several downstream mediators and influence analgesia as well as reward mechanisms in the nervous system. K channels are downstream targets of the μ opioid receptor and contribute to morphine-induced antinociception. The aim of the present work was to assess the role of SUR1-subtype K channels in antinociception and hyperlocomotion of synthetic and semi-synthetic opioids. Adult male and female mice wild-type (WT) and SUR1 deficient (KO) mice were assessed for mechanical and thermal antinociception after administration of either buprenorphine, fentanyl, or DAMGO. Potassium flux was assessed in the dorsal root ganglia and superficial dorsal horn cells in WT and KO mice. Hyperlocomotion was also assessed in WT and KO animals after buprenorphine, fentanyl, or DAMGO administration. SUR1 KO mice had attenuated mechanical antinociception after systemic administration of buprenorphine, fentanyl, and DAMGO. Potassium flux was also attenuated in the dorsal root ganglia and spinal cord dorsal horn cells after acute administration of buprenorphine and fentanyl. Hyperlocomotion after administration of morphine and buprenorphine was potentiated in SUR1 KO mice, but was not seen after administration of fentanyl or DAMGO. These results suggest SUR1-subtype K channels mediate the antinociceptive response of several classes of opioids (alkaloid and synthetic/semi-synthetic), but may not contribute to the "drug-seeking" behaviors of all classes of opioids.

Learn More >

TTI-101: A competitive inhibitor of STAT3 that spares oxidative phosphorylation and reverses mechanical allodynia in mouse models of neuropathic pain.

Signal Transducer and Activator of Transcription (STAT) 3 emerged rapidly as a high-value target for treatment of cancer. However, small-molecule STAT3 inhibitors have been slow to enter the clinic due, in part, to serious adverse events (SAE), including lactic acidosis and peripheral neuropathy, which have been attributed to inhibition of STAT3's mitochondrial function. Our group developed TTI-101, a competitive inhibitor of STAT3 that targets the receptor pY705-peptide binding site within the Src homology 2 (SH2) domain to block its recruitment and activation. TTI-101 has shown target engagement, no toxicity, and evidence of clinical benefit in a Phase I study in patients with solid tumors. Here we report that TTI-101 did not affect mitochondrial function, nor did it cause STAT3 aggregation, chemically modify STAT3 or cause neuropathic pain. Instead, TTI-101 unexpectedly suppressed neuropathic pain induced by chemotherapy or in a spared nerve injury model. Thus, in addition to its direct anti-tumor effect, TTI-101 may be of benefit when administered to cancer patients at risk of developing chemotherapy-induced peripheral neuropathy (CIPN).

Learn More >

Pharmacological and genetic manipulations at the µ-opioid receptor reveal arrestin-3 engagement limits analgesic tolerance and does not exacerbate respiratory depression in mice.

Opioid drugs are widely used analgesics that activate the G protein-coupled µ-opioid receptor, whose endogenous neuropeptide agonists, endorphins and enkephalins, are potent pain relievers. The therapeutic utility of opioid drugs is hindered by development of tolerance to the analgesic effects, requiring dose escalation for persistent pain control and leading to overdose and fatal respiratory distress. The prevailing hypothesis is that the intended analgesic effects of opioid drugs are mediated by µ-opioid receptor signaling to G protein, while the side-effects of respiratory depression and analgesic tolerance are caused by engagement of the receptor with the arrestin-3 protein. Consequently, opioid drug development has focused exclusively on identifying agonists devoid of arrestin-3 engagement. Here, we challenge the prevailing hypothesis with a panel of six clinically relevant opioid drugs and mice of three distinct genotypes with varying abilities to promote morphine-mediated arrestin-3 engagement. With this genetic and pharmacological approach, we demonstrate that arrestin-3 recruitment does not impact respiratory depression, and effective arrestin-3 engagement reduces, rather than exacerbates, the development of analgesic tolerance. These studies suggest that future development of safer opioids should focus on identifying opioid ligands that recruit both G protein and arrestin-3, thereby mimicking the signaling profile of most endogenous µ-opioid receptor agonists.

Learn More >

Targeting reactive nitroxidative species in preclinical models of migraine.

Reactive nitroxidative species, such as nitric oxide but particularly peroxynitrite, have been strongly implicated in pain mechanisms. Targeting peroxynitrite is anti-nociceptive in pain models, but little is known about its role in migraine mechanisms. Given the need to validate novel targets for migraine headache, our objective was to study the potential of reactive nitroxidative species, particularly peroxynitrite, as novel targets for drug discovery and their role in migraine mechanisms.

Learn More >

Evaluating the stability of opioid efficacy over 12 months in patients with chronic noncancer pain who initially demonstrate benefit from extended release oxycodone or hydrocodone: harmonization of Food and Drug Administration patient-level drug safety st

Opioids relieve acute pain, but there is little evidence to support the stability of the benefit over long-term treatment of chronic noncancer pain. Previous systematic reviews consider only group level published data which did not provide adequate detail. Our goal was to use patient-level data to explore the stability of pain, opioid dose, and either physical function or pain interference in patients treated for 12 months with abuse deterrent formulations of oxycodone and hydrocodone. All available studies in the Food and Drug Administration Document Archiving, Reporting, and Regulatory Tracking System were included. Patient-level demographics, baseline data, exposure, and outcomes were harmonized. Individual patient slopes were calculated from a linear model of pain, physical function, and pain interference to determine response over time. Opioid dose was summarized by change between baseline and the final month of observation. Patients with stable or less pain, stable or lower opioid dose, and stable or better physical function (where available) met our prespecified criteria for maintaining long-term benefit from chronic opioids. Of the complete data set of 3192 patients, 1422 (44.5%) maintained their pain level and opioid dose. In a secondary analysis of 985 patients with a measured physical function, 338 (34.3%) maintained their physical function in addition to pain and opioid dose. Of 2040 patients with pain interference measured, 788 (38.6%) met criteria in addition. In a carefully controlled environment, about one-third of patients successfully titrated on opioids to treat chronic noncancer pain demonstrated continued benefit for up to 12 months.

Learn More >

Search