I am a
Home I AM A Search Login

Pharmacology/Drug Development

Share this

Aprepitant is a novel, selective activator of the K2P channel TRAAK.

TRAAK (KCNK4, K2P4.1) is a mechanosensitive two-pore domain potassium (K2P) channel. Due to its expression within sensory neurons and genetic link to neuropathic pain it represents a promising potential target for novel analgesics. In common with many other channels in the wider K2P sub-family, there remains a paucity of small molecule pharmacological tools. Specifically, there is a lack of molecules selective for TRAAK over the other members of the TREK subfamily of K2P channels. We developed a thallium flux assay to allow high throughput screening of compounds and facilitate the identification of novel TRAAK activators. Using a library of ∼1200 drug like molecules we identified Aprepitant as a small molecule activator of TRAAK. Aprepitant is an NK-1 antagonist used to treat nausea and vomiting. Close structural analogues of Aprepitant and a range of NK-1 antagonists were also selected or designed for purchase or brief chemical synthesis and screened for their ability to activate TRAAK. Electrophysiology experiments confirmed that Aprepitant activates both the 'long' and 'short' transcript variants of TRAAK. We also demonstrated that Aprepitant is selective and does not activate other members of the K2P superfamily. This work describes the development of a high throughput assay to identify potential TRAAK activators and subsequent identification and confirmation of the novel TRAAK activator Aprepitant. This discovery identifies a useful tool compound which can be used to further probe the function of TRAAK K2P channels.

Learn More >

Efficacy and Safety of a Novel Mucoadhesive Clobetasol Patch for Treatment of Erosive Oral Lichen Planus.

Oral lichen planus (OLP) is a chronic inflammatory disorder of the oral mucosa. Currently there is no approved treatment for oral lichen planus (OLP). We report on the efficacy and safety of a novel mucoadhesive clobetasol patch (Rivelin -CLO) for the treatment of OLP.

Learn More >

Intra-articular injection of triamcinolone acetonide sustains macrophage levels and aggravates osteophytosis during degenerative joint disease in mice.

Corticosteroids such as triamcinolone acetonide (TAA) are potent drugs administered intra-articularly as an anti-inflammatory therapy to relieve pain associated with osteoarthritis (OA). However, the ability of early TAA intervention to mitigate OA progression and modulate immune cell subsets remains unclear. Here we sought to understand the effect of early intra-articular injection of TAA towards OA progression, local macrophages and peripheral blood monocytes.

Learn More >

Pharmacological and clinical implications of local anaesthetic mixtures: a narrative review.

Various techniques have been explored to prolong the duration and improve the efficacy of local anaesthetic nerve blocks. Some of these involve mixing local anaesthetics or adding adjuncts. We did a literature review of studies published between 01 May 2011 and 01 May 2021 that studied specific combinations of local anaesthetics and adjuncts. The rationale behind mixing long- and short-acting local anaesthetics to hasten onset and extend duration is flawed on pharmacokinetic principles. Most local anaesthetic adjuncts are not licensed for use in this manner and the consequences of untested admixtures and adjuncts range from making the solution ineffective to potential harm. Pharmaceutical compatibility needs to be established before administration. The compatibility of drugs from the same class cannot be inferred and each admixture requires individual review. Precipitation on mixing (steroids, non-steroidal anti-inflammatory drugs) and subsequent embolisation can lead to serious adverse events, although these are rare. The additive itself or its preservative can have neurotoxic (adrenaline, midazolam) and/or chondrotoxic properties (non-steroidal anti-inflammatory drugs). The prolongation of block may occur at the expense of motor block quality (ketamine) or block onset (magnesium). Adverse effects for some adjuncts appear to be dose-dependent and recommendations concerning optimal dosing are lacking. An important confounding factor is whether studies used systemic administration of the adjunct as a control to accurately identify an additional benefit of perineural administration. The challenge of how best to prolong block duration while minimising adverse events remains a topic of interest with further research required.

Learn More >

Relationship between pineal gland, sleep and melatonin in fibromyalgia women: a magnetic resonance imaging study.

A total of 80% of fibromyalgia (FM) population have reported poor sleep. In this regard, the pineal gland, involved in circadian rhythm processes as a key neuroendocrine organ which mainly synthesises and secretes melatonin, has never been studied before in this population. Therefore, this study aimed to evaluate the parenchyma pineal volume and its relation to sleep hours, sleep quality index and melatonin level at night. A total of 50 participants, 30 women with FM and 20 healthy control women underwent cranial magnetic resonance imaging. The total pineal volume, cyst pineal volume and parenchyma pineal volume were manually calculated in cubic millimetres. Also, the total pineal volume was estimated using Hasehawa method. Parenchyma pineal volume was significantly correlated with sleep hours (p-value = 0.041) and nocturnal melatonin level (p-value = 0.027). Moreover, there was also a non-significant correlation between parenchyma pineal volume and sleep quality index (p-value = 0.055). Furthermore, a mean parenchyma pineal volume of 102.00 (41.46) mm³ was observed, with a prevalence of 29.60% cyst in FM group. This is the first study that has reported pineal gland volumes, cyst prevalence and correlative relationships between parenchyma pineal volume and sleep hours and melatonin levels in women with FM.

Learn More >

The Cannabidiol Analog PECS-101 Prevents Chemotherapy-Induced Neuropathic Pain via PPARγ Receptors.

Chemotherapy-induced peripheral neuropathy (CIPN) is the main dose-limiting adverse effect of chemotherapy drugs such as paclitaxel (PTX). PTX causes marked molecular and cellular damage, mainly in the peripheral nervous system, including sensory neurons in the dorsal root ganglia (DRG). Several studies have shown the therapeutic potential of cannabinoids, including cannabidiol (CBD), the major non-psychotomimetic compound found in the Cannabis plant, to treat peripheral neuropathies. Here, we investigated the efficacy of PECS-101 (former HUF-101), a CBD fluorinated analog, on PTX-induced neuropathic pain in mice. PECS-101, administered after the end of treatment with PTX, did not reverse mechanical allodynia. However, PECS-101 (1 mg/kg) administered along with PTX treatment caused a long-lasting relief of the mechanical and cold allodynia. These effects were blocked by a PPARγ, but not CB1 and CB2 receptor antagonists. Notably, the effects of PECS-101 on the relief of PTX-induced mechanical and cold allodynia were not found in macrophage-specific PPARγ-deficient mice. PECS-101 also decreased PTX-induced increase in Tnf, Il6, and Aif1 (Iba-1) gene expression in the DRGs and the loss of intra-epidermal nerve fibers. PECS-101 did not alter motor coordination, produce tolerance, or show abuse potential. In addition, PECS-101 did not interfere with the chemotherapeutic effects of PTX. Thus, PECS-101, a new fluorinated CBD analog, could represent a novel therapeutic alternative to prevent mechanical and cold allodynia induced by PTX potentially through the activation of PPARγ in macrophages.

Learn More >

Atogepant and sumatriptan: no clinically relevant drug-drug interactions in a randomized, open-label, crossover trial.

To evaluate pharmacokinetic interactions of atogepant with sumatriptan, an open-label, randomized, crossover study was conducted. Thirty healthy adults received atogepant 60 mg, sumatriptan 100 mg, or coadministered drugs. Primary end point was geometric mean ratios (GMRs) and 90% CIs of interventions for area under the plasma concentration-time curve from time 0 to t (AUC) or infinity (AUC) and peak plasma concentration (C). Atogepant GMRs for AUC and AUC versus with sumatriptan were within 90% CI 0.80-1.25, indicating no interaction; atogepant C was reduced by 22% (GMR: 0.78; 90% CI: 0.69-0.89) with sumatriptan. Sumatriptan GMRs for AUC, AUC and C versus with atogepant were within 90% CI 0.80-1.25. Atogepant with sumatriptan had no clinically relevant pharmacokinetic interactions.

Learn More >

Molecular simulations reveal the impact of RAMP1 on ligand binding and dynamics of calcitonin gene-related peptide receptor (CGRPR) heterodimer.

Calcitonin gene-related peptide receptor (CGRPR) is a heterodimer protein complex consisting of a class-B G protein-coupled receptor (GPCR) named calcitonin receptor-like receptor (CLR) and an accessory protein, receptor activity modifying protein type 1 (RAMP1). Here in this study, with several molecular modeling approaches and molecular dynamics (MD) simulations, the structural and dynamical effects of RAMP1 on the binding of small molecule CGRPR inhibitors (namely rimegepant and telcagepant) to the CGRPR extracellular ectodomain complex site (site 1) and transmembrane binding site (site 2) are investigated. Results showed that although these molecules stay stable at site 1, they can also bind to site 2, which may be interpreted as non-specificity of the ligands, however, most of these interactions at transmembrane binding site are not sustainable or are weak. Furthermore, to examine the site 2 for gepant binding, different in silico experiments (i.e., alanine scanning mutagenesis, SiteMap, ligand decomposition binding free energy analyses) are also conducted and the results confirmed the putative binding pocket (site 2) of the gepants at the CGRPRs.

Learn More >

MicroRNA-155-5p promotes neuroinflammation and central sensitization via inhibiting SIRT1 in a nitroglycerin-induced chronic migraine mouse model.

Previous studies have confirmed that the microglial activation and subsequent inflammatory responses in the trigeminal nucleus caudalis (TNC) are involved in the central sensitization of chronic migraine (CM). MicroRNA-155-5p has been shown to modulate the polarization of microglia and participate in inflammatory processes in a variety of neurological diseases. However, its role in CM remains unclear. The purpose of this study was to determine the precise role of miR-155-5p in CM.

Learn More >

Targeting GATA1 and p2x7r Locus Binding in Spinal Astrocytes Suppresses Chronic Visceral Pain by Promoting DNA Demethylation.

Irritable bowel syndrome is a gastrointestinal disorder of unknown etiology characterized by widespread, chronic abdominal pain associated with altered bowel movements. Increasing amounts of evidence indicate that injury and inflammation during the neonatal period have long-term effects on tissue structure and function in the adult that may predispose to gastrointestinal diseases. In this study we aimed to investigate how the epigenetic regulation of DNA demethylation of the p2x7r locus guided by the transcription factor GATA binding protein 1 (GATA1) in spinal astrocytes affects chronic visceral pain in adult rats with neonatal colonic inflammation (NCI). The spinal GATA1 targeting to DNA demethylation of p2x7r locus in these rats was assessed by assessing GATA1 function with luciferase assay, chromatin immunoprecipitation, patch clamp, and interference in vitro and in vivo. In addition, a decoy oligodeoxynucleotide was designed and applied to determine the influence of GATA1 on the DNA methylation of a p2x7r CpG island. We showed that NCI caused the induction of GATA1, Ten-eleven translocation 3 (TET3), and purinergic receptors (P2X7Rs) in astrocytes of the spinal dorsal horn, and demonstrated that inhibiting these molecules markedly increased the pain threshold, inhibited the activation of astrocytes, and decreased the spinal sEPSC frequency. NCI also markedly demethylated the p2x7r locus in a manner dependent on the enhancement of both a GATA1-TET3 physical interaction and GATA1 binding at the p2x7r promoter. Importantly, we showed that demethylation of the p2x7r locus (and the attendant increase in P2X7R expression) was reversed upon knockdown of GATA1 or TET3 expression, and demonstrated that a decoy oligodeoxynucleotide that selectively blocked the GATA1 binding site increased the methylation of a CpG island in the p2x7r promoter. These results demonstrate that chronic visceral pain is mediated synergistically by GATA1 and TET3 via a DNA-demethylation mechanism that controls p2x7r transcription in spinal dorsal horn astrocytes, and provide a potential therapeutic strategy by targeting GATA1 and p2x7r locus binding.

Learn More >

Search