I am a
Home I AM A Search Login

Pharmacology/Drug Development

Share this

Mast cells, cortistatin, and its receptor, MRGPRX2, are linked to the pathogenesis of chronic prurigo.

Chronic prurigo (CPG) is characterized by intensive itch and nerve-neuropeptide-mast cell interactions. The role of some neuropeptides such as cortistatin and its receptor MRGPRX2 in CPG is poorly investigated.

Learn More >

2-Oxooxazolidine-5-carboxamides as Na1.8 Inhibitors for Treating Pain Disorders, Cough Disorders, and Acute and Chronic Itch Disorders.

Learn More >

Immunogenicity of erenumab: A pooled analysis of six placebo-controlled trials with long-term extensions.

Immunogenicity of erenumab, a human anti-calcitonin gene-related peptide receptor monoclonal antibody developed for migraine prevention, has been evaluated throughout clinical development.

Learn More >

Poly (ADP-ribose) polymerase 1-mediated defective mitophagy contributes to painful diabetic neuropathy in the db/db model.

Studies have shown that poly (ADP-ribose) polymerase 1 (PARP1) was involved in the pathological process of diabetes. Mitophagy is widely acknowledged to be a key regulatory process in maintaining reactive oxygen species homeostasis via lysosome degradation of damaged mitochondria. However, the regulatory role of PARP1 in mitophagy-related mitochondrial oxidative injury and progression of painful diabetic neuropathy (PDN) is unclear. In this study, we studied the in vitro and in vivo mechanisms of PARP1-mediated mitophagy blockade in a leptin gene-mutation (db/db) mouse model of PDN. Db/db mice models of PDN were established by assessing the sciatic nerve conduction velocity (SNCV), mechanical withdrawal threshold (MWT), and thermal withdrawal latency (TWL). The results showed that PARP1 activity and mitochondrial injury of dorsal root ganglion (DRG) neurons were increased, and mitophagy was impaired in PDN mice. PARP1 was found to mediate the impairment of mitophagy in DRG neurons isolated from PDN mice. PARP1 inhibitors (PJ34 or AG14361) attenuated diabetes-induced peripheral nerve hyperalgesia, restored DRG neuron mitophagy function and decreased mitochondrial oxidative injury. Mitophagy impairment induced by lysosome deacidificant (DC661) aggravated diabetes-induced DRG neuron mitochondrial oxidative stress and injury. Taken together, our data revealed that PARP1 induced defective mitophagy of DRG neurons is a key mechanism in diabetes-induced peripheral neuropathic injury. Inhibition of PARP1 and restoration of mitophagy function are potential therapeutic targets for PDN.

Learn More >

Efficacy and safety of calcitonin gene-related peptide antagonists in migraine treatment: A meta-analysis.

We systematically reviewed the efficacy and safety of Calcitonin Gene-Related Peptide (CGRP) antagonists for migraine treatment.

Learn More >

A Randomized, Open-Label, Single-Dose Study to Assess Safety and Systemic Exposure of Triamcinolone Acetonide Extended-Release in Patients With Hip Osteoarthritis.

Intra-articular (IA) corticosteroids, including triamcinolone acetonide (TA), are a recommended treatment for hip osteoarthritis. We compared the safety and systemic exposure of TA extended-release (TA-ER) versus TA crystalline suspension (TAcs) in patients with hip osteoarthritis.

Learn More >

Nociceptor-derived Reg3γ prevents endotoxic death by targeting kynurenine pathway in microglia.

Nociceptors can fine-tune local or systemic immunity, but the mechanisms of nociceptive modulation in endotoxic death remain largely unknown. Here, we identified C-type lectin Reg3γ as a nociceptor-enriched hormone that protects the host from endotoxic death. During endotoxemia, nociceptor-derived Reg3γ penetrates the brain and suppresses the expression of microglial indoleamine dioxygenase 1, a critical enzyme of the kynurenine pathway, via the Extl3-Bcl10 axis. Endotoxin-administered nociceptor-null mice and nociceptor-specific Reg3γ-deficient mice exhibit a high mortality rate accompanied by decreased brain HK1 phosphorylation and ATP production despite normal peripheral inflammation. Such metabolic arrest is only observed in the brain, and aberrant production of brain quinolinic acid, a neurotoxic metabolite of the kynurenine pathway, causes HK1 suppression. Strikingly, the central administration of Reg3γ protects mice from endotoxic death by enhancing brain ATP production. By identifying nociceptor-derived Reg3γ as a microglia-targeted hormone, this study provides insights into the understanding of tolerance to endotoxic death.

Learn More >

Visualization of trigeminal ganglion sensory neuronal signaling regulated by Cdk5.

The mechanisms underlying facial pain are still incompletely understood, posing major therapeutic challenges. Cyclin-dependent kinase 5 (Cdk5) is a key neuronal kinase involved in pain signaling. However, the regulatory roles of Cdk5 in facial pain signaling and the possibility of therapeutic intervention at the level of mouse trigeminal ganglion primary neurons remain elusive. In this study, we use optimized intravital imaging to directly compare trigeminal neuronal activities after mechanical, thermal, and chemical stimulation. We then test whether facial inflammatory pain in mice could be alleviated by the Cdk5 inhibitor peptide TFP5. We demonstrate regulation of total Ca intensity by Cdk5 activity using transgenic and knockout mouse models. In mice with vibrissal pad inflammation, application of TFP5 specifically decreases total Ca intensity in response to noxious stimuli. It also alleviates inflammation-induced allodynia by inhibiting activation of trigeminal peripheral sensory neurons. Cdk5 inhibitors may provide promising non-opioid candidates for pain treatment.

Learn More >

Opioid-induced pronociceptive signaling in the gastrointestinal tract is mediated by delta-opioid receptor signaling.

Opioid tolerance (OT) leads to dose escalation and serious side effects, including opioid-induced hyperalgesia (OIH). We sought to better understand the mechanisms underlying this event in the gastrointestinal tract. Chronic administration of morphine by intraperitoneal (i.p.) injection in male C57BL/6 mice evoked tolerance and evidence of OIH in an assay of colonic afferent nerve mechanosensitivity; this was inhibited by the δ-opioid receptor (DOPr) antagonist naltrindole when i.p. injected previous morphine administration. Patch clamp studies of dorsal root ganglia (DRG) neurons following overnight incubation with high concentrations of morphine, the µ-opioid receptors (MOPr) agonist DAMGO or the DOPr agonist DADLE evoked hyperexcitability. The pronociceptive actions of these opioids were blocked by the DOPr antagonist SDM25N but not the MOPr antagonist CTOP. The hyperexcitability induced by DAMGO was reversed after a 1 hr washout but reapplication of low concentrations of DAMGO or DADLE restored the hyperexcitability, an effect mediated by protein kinase C (PKC). DOPr-dependent DRG neuron hyperexcitability was blocked by the endocytosis inhibitor Pitstop 2 and the weakly internalizing DOPr agonist ARM390 did not cause hyperexcitability. BRET studies in HEK cells showed no evidence of switching of G-protein signaling from G to a G pathway in response to either high concentrations or overnight incubation of opioids. Thus, chronic high dose opioid exposure leads to OT and features of OIH in the colon. This action is mediated by DOPr signaling and is dependent on receptor endocytosis and downstream PKC signaling.Opioids are effective in the treatment of abdominal pain but escalating doses can lead to opioid tolerance (OT) and potentially opioid-induced hyperalgesia (OIH). We found that δ-opioid receptor (DOPr) plays a central role in the development of OT and OIH in colonic afferent nociceptors following prolonged exposure to high concentrations of MOPr or DOPr agonists. Furthermore, the role of DOPr was dependent on OPr internalization and activation of a protein kinase C (PKC) signaling pathway. Thus, targeting DOPr or key components of the downstream signaling pathway could mitigate adverse side effects by opioids.

Learn More >

Drug Repurposing to Target Neuroinflammation and Sensory Neuron-Dependent Pain.

Around 20% of the American population have chronic pain and estimates in other Western countries report similar numbers. This represents a major challenge for global health care systems. Additional problems for the treatment of chronic and persistent pain are the comparably low efficacy of existing therapies, the failure to translate effects observed in preclinical pain models to human patients and related setbacks in clinical trials from previous attempts to develop novel analgesics. Drug repurposing offers an alternative approach to identify novel analgesics as it can bypass various steps of classical drug development. In recent years, several approved drugs were attributed analgesic properties. Here, we review available data and discuss recent findings suggesting that the approved drugs minocycline, fingolimod, pioglitazone, nilotinib, telmisartan, and others, which were originally developed for the treatment of different pathologies, can have analgesic, antihyperalgesic, or neuroprotective effects in preclinical and clinical models of inflammatory or neuropathic pain. For our analysis, we subdivide the drugs into substances that can target neuroinflammation or substances that can act on peripheral sensory neurons, and highlight the proposed mechanisms. Finally, we discuss the merits and challenges of drug repurposing for the development of novel analgesics.

Learn More >

Search